

Artificially Intelligent
Requirement Analysis Tool
Design Document Team 8

03.26.2019
─

SE 491
Team 8

1

Table of Contents 2

1 Introduction 3
1.1 Acknowledgement 3
1.2 Problem and Project Statement 3
1.3 Operational Environment 3
1.4 Intended Users and Uses 4
1.5 Assumptions and Limitations 4
1.6 Expected End Product and Deliverables 4

2. ​Design Specification 5
2.1 ​Proposed Design 6

2.1.1 Reports Viewer and Reports Finder 6
2.1.2 Configuration Form/Analysis Initializer and the Configuration Manager: 6
2.1.3 Parser 7
2.1.4 Google’s Word2Vec Model 7
2.1.5 Gensim (Word Mover’s Distance) 7
2.1.6 Classification Model Training 7
2.1.7 Analysis Algorithm 9
2.1.8 Report Generation 10
2.1.9 Database 10

2.2 Current Status 1​1
2.2.1 Research Tools for NLP Word Embeddings 1​1
2.2.2 Observed Requirement Data 1​1
2.2.3 Conclusion of work done so far 11
2.2.4 Implementation Issues and Challenges 11

3 Testing and Implementation 1​2
3.1 Interface Specifications 1​2
3.2 Hardware and software 1​2
3.3 Functional Testing 1​3

3.3.1 Testing Model Accuracy 1​3
3.3.2 Testing Algorithm Under Configurations 1​3
3.3.3 Testing Parser with Broken Input 1​3
3.3.4 Testing Methods 1​3

3.4 Non-Functional Testing 1​4
3.5 Process 1​5
3.6 Results 1​6

4 Closing Material 1​7

2

4.1 Conclusion 1​5
4.2 References 1​5

3

1 Introduction

1.1 Acknowledgement
We would like to give special thanks to our faculty advisor, Dr. Mitra for helping us

with planning this project. Also, to Jason Wong and the Collins Aerospace advisors for
hosting and overseeing this project. Finally, a thanks to teams at Google who put together
the Google Word2Vec Model which will give us a great beginning with a great NPL model.

1.2 Problem and Project Statement
Requirement tracing, which is the process of creating logical links between

individual requirements, is essential in projects carried out by Collins Aerospace. When
working with safety critical systems, it must be ensured that all necessary features are
recognized, that no unnecessary features are included, and that we can link the reasoning
for including a component to a higher feature. Projects at Collins Aerospace may include
thousands of requirements, most of which link to one or more other requirements. As of
today, employees at Collins create and review these requirements by hand or with
“non-intelligent” tools. Manually reviewing the accuracy of a requirement trace and
deciding which links are good and which need to be removed is extremely expensive in
terms of the time that must be dedicated to ensure that the requirement trace is sufficient
for the project at hand. The purpose of this Capstone project is to develop a tool for Collins
in order to automate requirement trace analysis.

Our proposed solution to this problem is to utilize the Gensim python library which
include algorithms such as Word2Vec and Word Movers Distance. These algorithms analyze
the similarities between text. Our tool will take multiple Excel documents as input, which
specify all individual requirements and the other requirements that each are linked to. By
using the gensim libraries, we will be able to generate similarities between the linked
requirements and feed them into a model which will then flag the link as either good, bad,
or suspicious. The tool will also recommend possible links for requirements which may
have had a bad link or if it finds a very likely match. Finally, a file containing a report
generated by the analysis will be displayed for the user to view.

1.3 Operational Environment
This project is completely software based and therefore will operate on Collins

Aerospace servers. Users will interact with a web GUI which communicates with our back
end server which will be written in python. The major concerns associated with this project

4

are security related, so we must ensure that all data given to our tool and output by our
tool is secure.

1.4 Intended Users and Uses
Intended Users:

The users of this tool will be Collins Aerospace engineers. There will be
several engineering teams that will have access to the tool, however they will all
have the same intended uses which allows us to group them into one type of user.

Intended Uses:

There is only one major intended use for this tool. The tool will be used to
generate reports on an analysis of requirement links. The process of analyzing these
links will initially include classifying them as good, bad, or suspicious. Secondary
functionality includes suggesting possible missing links between requirements.
Once the analysis process completes, a report will be generated for the user to view
and fix any errors found by the tool.

1.5 Assumptions and Limitations
Assumptions

● A web form will be sufficient for configuring settings in the analysis process.
● HTML, CSS, Bootstrap and JavaScript will be sufficient to develop the

front-end UI.
● Similarity given by Word2Vec and Word Movers Distance will be sufficient to

create a classification model for analyzing links.
● Google’s Word2Vec model will be a more than sufficient model for our

purposes, and will reduce time accounting for out of vocabulary words.
● System will be sufficient enough to handle multiple numerous user request

Limitations

Collins Aerospace has not put any limitations on this project. The project is
open for our team to make these decisions.

1.6 Expected End Product and Deliverables
Our team plans to deliver a tool to read requirement documents provided to it by a

user, analyze the documents, and classify links between requirements as either good, bad,
or suspicious. The tool will be hosted on a linux server and will be capable of being

5

accessed by either command line or web GUI. Secondary deliverables include expanding
the tool to include the following features:

● Identify/suggest possible missing links between requirements
● Analyze links between code and requirements
● Analyze links between tests and code

2. Design Specifications
The Design of the software will contain three main components GUI, server and the

database. The GUI will contain a report viewer, configuration form and analysis
initialization, and model training configuration form. Server will contain components like
reports finder, gensim libraries, configurations manager, parser, analysis algorithm, report
generator and model training. The database will contain report table, google word2vec
model, configuration table and model storage. Report functionality will take place based
on report viewer, report finder and reports tables which will be generated by the server
using other components. Other analysis algorithms will be based on user’s selection of
algorithm for analysing the link which will be obtained through the model training
configuration form.

2.1 Proposed Design

6

2.1.1 Reports Viewer and Reports Finder:

The reports generated by this tool will be stored in the Reports Table in the
database. These reports will be able to be viewed by the user via the Reports Viewer on the
GUI. The user will go to the Reports Viewer and select a report they would like to view. The
desired form will be sent to the Reports Finder module which will pull the report from the
table and send the data back to be displayed in the Reports Viewer on the GUI. The user
will also have the option to download the report into an excel file from this page.

2.1.2 Configuration Form/Analysis Initializer and the Configuration Manager:

The tool will need information from the user in order to run the analysis process.
The information will be provided by a webform on the GUI. This information will include the
following:

● The input requirement documents will be selected to be upload to the server for
analysis

● Information about which requirement file links to which other requirement file
○ This may be also be implemented by enforcing a file format which declares a

column only if the files are linked
● The input document layout (i.e. the column names) so that our parser knows how to

read the input files
○ For simplicity, the file layout may become strict requiring the user to follow it

● Whether to scan for possible missing links
○ Not scanning for these missing links will make the process run much faster

because there will be a reduced number of comparisons between
requirements

● Whether to display or download the report when analysis is complete
○ If not specified to do either of these options, the report data will still be

stored in the database.

Once the user has specified all of the information that the tool requires to run, the
user will have three options for proceeding. First, they may start the analysis process with
the settings provided in the form they filled out. Otherwise they could simply save the
settings without running the tool, or finally, they could both run the tool and save the
configurations at the same time.

The user also will be provided with the alternative option of providing and
submitting a settings file. The parser will be set to read either option so that we may also
run the tool via command line effectively. The analysis module will just need to be called

7

with the respective settings file and the process can then be called or even automated or
scheduled.

2.1.3 Parser

The parser is the first component of the analysis process. Before our tool can
analyze any requirements, the parser will extract the data from the requirements
documents provided by the user. The parser will receive parsing rules from either a GUI
web form or a settings file specified by the user. From there, the parser will accomplish the
following tasks:

● Check that the files contain the required columns which include:
○ Object ID
○ Requirement text
○ Derived
○ Object ID of linked requirement

● Replace any abbreviations with their full wording
● Extract the fields listed above into a dictionary which will be used by the analysis

algorithm

2.1.4 Google’s Word2Vec Model

In order to capture the similarity between requirement text, we will need to use a
method for natural language processing. We chose to use Word2Vec for word embeddings.
Due to the security of Collins Aerospace, we are unable to access enough data to efficiently
train our own Word2Vec model. Luckly, Google trained a Word2Vec model which is free to
the public. This model was trained on data from Google News and contains over a billion
word embeddings. This will be a highly trained model which will allow us to spend our time
away from training Word2Vec models and finding methods to account for out of
vocabulary words.

2.1.5 Gensim (Word Mover’s Distance)

Word2Vec on its own, is not enough to calculate similarity between two pieces of
text, or in our case, two requirements. This is where Gensims Word Mover’s Distance
algorithm comes into play. The Word Mover’s Distance algorithm will take the two linked
requirements as parameters and output a distance which represents the similarity
between the requirements. The output is technically a distance where smaller distances
declare high similarity between requirements and large distances represent low similarity.

8

2.1.6 Classification Model Training

From the Model Training Configuration Form, the user will specify requirement
documents to upload for training a new model. These documents will be similar to real
documents that are used in analysis, except they will have an extra column which specifies
whether a link is good or bad. This column paired with output for the distance between
requirements (similarity) will be what the model uses to learn.

Without knowing what the output from Google’s Word2Vec and Gensim Word
Mover’s Distance will look like, we must predict how our data will look until we can actually
visualize the true data. In theory, it should look something like the figure below:

The true classification of a link should either be good or bad. In the graph above, the
y axis represents the class probability and the x axis represents the distance output by
Word Mover’s Distance (aka the how similar the links are). These classifications can be seen
in the figure above where the yellow marks where Y = 0 are the good links plotted at their
Word Mover’s Distance, and the marks on the top are bad links plotted at Y = 0. The blue
line is a sigmoidal function that fits the probability that any given point is either good or
bad.

Say we wanted to classify a point using the graph above. We would plug in our Word
Mover’s Distance and see what the Y value is. Let’s say Y = .4 at distance D. We would see
that Y < .5 and say that the probability leans towards the link being a good link. Now if Y =
.8, we would predict that the link was bad, because the probability leans towards the link
being a bad link. What we can proceed to do is define a range where we classify the link as
suspicious. To do this we may say that if .4 < Y < .6, then we cannot accurately predict the
links class because it’s nearly a 50% chance that the link is either good or bad. By following

9

this format, we can read a distance provided by Word Mover’s Distance and return a
classification as good, bad or suspicious. To store the model in the database, we may
simply store the coefficients of the sigmoidal function.

2.1.7 Analysis Algorithm

The analysis algorithm will bring together everything discussed so far. The algorithm
will be given the dictionary of requirement data generated by the parser, will use Google’s
Word2Vec model with Gensim Word Mover’s Distance algorithm, and will query for the
desired classification model. For each link, the algorithm will use the Word Mover’s
Distance algorithm to evaluate the similarity of the requirements. The output will then be
run through the classification model which determines if the link is good, bad, or
suspicious. Each of the classifications will be stored and sent to the report generator once
analysis is finished.

After primary functionality is implemented, we will begin designing and expanding
this algorithm to suggest possible missing links, analyze links from code to requirements,
and analyze links from tests to code.

2.1.8 Report Generation

When the analysis algorithm is finished, it will send all of its classification decisions
to this report generation module. This module will store all the findings of the analysis into
the Reports Table. If specified by the user, the user will be sent to the Reports Viewer page
to review the report that has been generated.

2.1.9 Database

The structure of the database will include three tables: Settings, Reports, and
Models. Whenever a user trains a new model, the coefficients of the models will be stored
in the Models table, so that they may be accessed again later. If the user specifies that they
would like to save their settings, the settings will be stored in the settings table. After an
analysis has been completed, the report that is generated will be stored in the Reports
table so that all past reports that have been generated can be accessed and viewed by the
appropriate users.

2.1.10 User Interface

The tool will include a simple and clean web GUI that allows users to configure the
tool to their needs. There will be four pages for the user to access which are as follows:

10

1. Reports Viewer
2. Configurations Form/Analysis Initiation
3. Model Training
4. About/Help Page

The functionality of the first three pages have been discussed above. The fourth
page will be a reference for users when there are any questions or help needed. We will
provide instructions on using the tool, and explanations of how process work so that the
user will be able to use the tool to its full potential.

2.2 Current Status

2.2.1 Research Tools for NLP Word Embeddings

Our team started out the semester by researching different methods of calculating
similarity between two pieces of text. We researched the following methods for embedding
text into word vectors: Word2Vec, FastText, GLoVe, and Doc2Vec. During our research, we
noticed that most of these methods were very similar in terms of input and output. With
this being the case, we decided on Word2Vec. We did this because while researching
Word2Vec, we found that Google released a Word2Vec model that was trained on Google
News and contains over a billion word vectors. This will negate the problem we’ve had with
finding enough data to train a sufficient Word2Vec model. With Google’s Word2Vec model,
we will also have less worries about encountering out of vocabulary words.

2.2.2 Observed Requirement Data

Once our team was eventually granted access to a small portion of requirement
data at the Collins Research, we have been familiarizing ourselves with the requirement
documents we are expected to be working with. These documents turned out to be much
more complex than we expected. With this being the case, we are designing a method to
parse the data and analyze requirements in a way that the Word Mover’s Distance
algorithm will be able to give reasonable results.

11

2.2.3 Conclusion of Work Done so Far

As mentioned above, Word2Vec and Word Mover Distance algorithm will be
implemented as per the requirement and the data observed, which was provided to our
team through Collins Aerospace. Till time, we had difficulty in searching for sufficient data
for the model to be trained. We have requested Collins Aerospace to provide us with
enough data to train the model, in order to provide them with sufficient and efficient
classification of the links. Thus, as a solution to strengthen our weaknesses of insufficient
data, we have decided to train our model with Google News.

2.2.4 Implementation Issues and Challenges

The project is related to the United States Defence Department sponsored by Collins
Aerospace. So, far the algorithm has been implemented such as word2vec and doc2vec.
However, to train the model based on these algorithms, we need sufficient data. Due to the
security and classified information involved with the project, Collins Aerospace is having
tough time sharing the required information to train the model. However, we have started
training the model based on the minimum data provided. Other than that, we are asked to
create dummy data for the training purposes. That been said, it might not be the most
accurate trained model as the data it’s trained on is dummy and not the original one.

3 Testing and Implementation

3.1 Interface Specifications
The user will interact directly with one of two components to run the tool; either a

command line, or a graphical user interface. The components that the user have access to
will call the components on the server via an API that will be defined for communication
between client and server. From there the server will communicate with the database via
the standard MySQL interfacing.

3.2 Hardware and software
We will be using python’s built-in module “unittest” for testing parser, trained mode, report
generator, or any other modules written in python. We will use unittest for testing the
databases as well.

12

A test program called Postman will be used to manually test the REST API we will develop
for the UI. For automated testing, we will simply use python’s “requests” module and
“unittest”.

For UI, we will use mocha and selenium. Mocha is for unit-testing the functions used inside
the UI. Selenium is used to test the UI such as simulating the click, input data, scroll etc.

Hardware - we will not use any hardware for our project.

3.3 Functional Testing

3.3.1 Testing Model Accuracy

The most important testing that we will need to do is testing how accurately our
model can classify links. We would like to shoot for a minimum of 70%-80% classification
accuracy. If our model has accuracy under this range, then we will need to either rethink
our classification model, or come up with a requirements formatting standard that will help
us capture similarity more accurately.

3.3.2 Testing Algorithm Under Configurations

Another major area for functional testing will be testing whether the analysis
process will break under any combination of settings. The tool will be able to be configured
in many different ways so we need to make sure that the tool won’t break down and
handles any poor configuration attempts.

3.3.3 Testing Parser with Broken Input

We will need to test our parser and make sure that it will not break if the tool was
misconfigured or the input data is improperly formatted. It is very possible that these
situations occur due to user error or updates in the company processes. We need to test
the parser to ensure that it will be able to respond appropriately under all circumstances.

3.3.4 Testing Methods

Our team decided that using the standard python testing library unittest will be
sufficient to test all of our projects components. The library is both well received and
trusted so we will have no conflicts in our decision of testing library.

One component will be tested at a time. Once a two communicating components
are individually tested, they will be put together and tested as a whole to make sure they

13

work as expected. This process will continue until all the components have been tested and
implemented together.

3.4 Non-Functional Testing

3.4.1 Security

Security is important for this tool as the data deals with information provided by U.S
Defence Division through Collins Aerospace. Following are the testing that needs to be
performed before the end product is handed over to Collins Aerospace:

● Vulnerability Scanning

The software needs to be scanned for any vulnerability that may
cause any security holes.

● Security Scanning

Perform testing to identify weakness related to network and system
and reduce the risk of such security holes using manual or automated
system that are already available.

● Penetration Scanning

Testing will be performed on the software to evaluate if there are any
changes of malicious hacker to hack the system easily. In order to
reduce the risk of such attacks, analyses needs to be performed on
the system related to security.

● Posture Assessment

Security scanning related to ethical hacking and risk assessment
needs to be performed in order to verify that there are no risk related
to the software that could cause loss of data as the data is highly
classified.

3.4.2 Portability

The application will be used in different department of Collins Aerospace. The
software needs to be deployed easily and should be able to perform its duty as per each
department requirement. Thus, the portability of the software comes in handy and needs
to be flexible for each department.

3.4.3.Performance

14

Application will be forming machine learning algorithm on large number of data
provided by each department of Collins Aerospace. Thus, it needs to be done as effectively
as possible so that the processes are not time consuming and inefficient. Thus,
performance is another important factor that needs to be initiated while designing the
software.

3.4.4 Modifiability

As the application is going to be used by different department of collins aerospace.
Each department has an option to implement their own machine learning algorithm. Thus,
it needs be easily modifiable so that no other section of the software breaks on a new
updated version of the software.

3.5 Process
Section 1: Training Module

- Test the accuracy of trained model using test data (we will have both train data and
test data).

- Statistically show how accurate it is (e.g. xx %). Since there is a trade-off between
train data accuracy and test data accuracy, choose the configuration that creates the
max value of the sum of both accuracies.

Section 2: Analysis Algorithm

- Core of our application and the most important. We need to thoroughly test this
module. Again, we will use python unit test.

- There are two important aspects: Accuracy and Efficiency. The accuracy can be
tested by randomly choosing input with known results and making a prediction.
Then check how accurate the prediction is.

- The efficiency can be tested by using the timer. Ideally this should be in a matter of
seconds since developers need to use our tool very often.

- Now check to see if the algorithm raises any exceptions. The most common
exception would be out-of-vocabrary exceptions. We will check this will not occur for
all the data we are provided so far.

Section 3: Parser

- Given data with enough edge cases, check if the parser gives the output with desired
format.

- Check if all acronyms are replaced.
- Check if all flag type codes are replaced with English texts that hold some meaning.
- We will use python unit test.

15

Section 4: Web User Interface

- Both manual testing and automated testing will be performed. Test for both Firefox
and Chrome.

- Open a webpage with a browser
- For reports viewer, with given report key in the input box, find the corresponding

report
- if the report shows up, then check if the report has all the information we need
- For configuration UI, check if the UI have all necessary inputs
- Then check if the inputs a user provides are actually sent to the server by checking

the server log.
- If the input is sent to the server, check if the data is in the correct format.
- (Optional) From the security perspective, check if all forms on the UI are resilient to

XSS and Infection attacks. This can be done by using Kali and the associated tools.

Section 5: Configuration Manager

- First, We will check if it contains all necessary configuration options.
- Then check if the configurations are properly stored in the database.
- It needs to endure the concurrency problems since multiple users can edit the

configuration at the same time.

Section 6: Report Module

- This is an intermediate step from analysis algorithm output to the database.
- Unit test if the data is properly received
- Unit test if the output is stored properly in the database by using raw SQL

statements.

Section 7: The whole report generating process

- This process has to be able to handle multiple requests at the same time. So input
multiple data and see if it doesn't stop working.

- Anticipate the hardware failure. Occasionally store the intermediate results into the disk
to mitigate hardware failure. During the testing, we will force shutdown the system and
see if it recovers.

3.6 Results
At this point in our project, we do not have any finished prototypes and therefore

have not been able to perform any tests of our implementation. Therefore, we are unable
to make any statements about results that have been obtained at this time. Once we have
reached a point when we have performed tests, this document will be updated with results.

16

4 Closing Material

4.1 Conclusion
Artificial Intelligence for Requirement Analysis Tools will be delivered successfully

along with a GUI that contains a command line application as well as other visual and
form-based application as asked by the client. The software will be focused on analysis of
links between the platforms, domains and subdomains as per the client’s requirement.
Analyzing will be performed using machine learning algorithms such as word2vec, doc2vec
and Word Mover Distance. The software will meet the non functional requirements related
to security, performance, portability, and modifiability. These project will help the company
to analyze the system links, and would reduce human errors.

So far, our team have been researching, implementing and testing word2vec,
doc2vec and word mover distance algorithm. Apart from that, a GUI is under progress, and
would be completed soon before the end of the semester. However, the testing of the GUI
will be performed as we go through the process as well as in the upcoming semester.

Future goals includes implementation of a parser, an algorithm for classification of the
links, visual representation of data on the GUI, and testing the software based on
functional and non-functional requirements. At the end of the process, our team will be
delivering the end product to the client along with the documentation describing the
process to use the software as well a brief video tutorial on the software implementation
and usability.

17

4.2 References

“gensim: topic modelling for humans,” ​Radim Å​ehÅ¯Å​ek: Machine learning consulting​.
[Online]. Available: https://radimrehurek.com/gensim/models/word2vec.html. [Accessed:
26-Mar-2019].

“gensim: topic modelling for humans,” ​Radim Å​ehÅ¯Å​ek: Machine learning consulting​.
[Online]. Available: https://radimrehurek.com/gensim/models/doc2vec.html. [Accessed:
26-Mar-2019].

G. James, D. Witten, T. Hastie, and R. Tibshirani, ​An introduction to statistical learning: with
applications in R​. New York: Springer, 2017.

18

