

Collins Aerospace
Artificially Intelligent
Requirement Analysis Tool
Project Plan Team 8

04.24.2019
─

SE 491
Team 8

Members:
Apurva Patel - Project Lead, Report Manager, Technical Support,
Communicator, AI Training Lead
Ryan Cerveny - Scrum Master, Meeting Scribe/Facilitator, Project Lead,
Communicator
Takao Shibamoto - Chief Engineer, Researcher, UI Lead
Jonathan Murphy - Testing Engineer, Researcher, Requirement Lead

Client:
Collins Aerospace (Representative: Jason Wong)

Faculty Advisor
Dr. Simanta Mitra

 1

Table of Content
Project Plan Team 8 0

Table of Content 1

List of Figures 3

List of Table 4

List of Symbols 4

List of Definition & Acronyms 4

1. Introductory Material 5
1.1 Acknowledgement 5
1.2 Problem Statement 6

2. Project Deliverables and Specifications 6
2.1 Deliverables: 6
2.2 Project Specification 7

2.2.1 Operating environment 7
2.2.2 Intended Users and Use Cases 7
Figure 1: Use Case Diagram 8
2.2.3 Assumptions and Limitation 8

3. Previous Work and Literature Review 9
Figure 2: Autonomous Generation Code Generation Framework 10

4. Proposed Design/Solution 11
4.1 High Level Block Diagram 11

Figure 3: Block Diagram for AI-RAT System 12
4.1.1 Command Line Input 12
4.1.2 Requirement Directory Parser 12
4.1.3 Topic Modeling Module 12
4.1.4 Gensim Library for Topic Modeling 12
4.1.5 Link Classification Algorithm 12
4.1.6 Reports Module 13
4.1.7 Report Storage Directory 13

4.2 Functional Requirement 13
4.3 Constraints Consideration 13

4.3.1 Limited Access to Data 14

 2

4.3.2 On Campus Accessibility of Restricted Data 14
4.4 Technology Consideration 14
4.5 Security Consideration 14
4.6 Safety Consideration 14
4.7 Technical Approach Consideration 14

4.7.1 General Approach 15
4.7.2 Word2Vec & Word Movers Distance 15
4.7.3 Doc2Vec 15
4.7.4 GloVe 16
4.7.4 Topic Modeling 17
4.8 Validation and Acceptance Test 18

4.9 Cost Consideration 19
4.10 Possible Risks and Risk Management 19
4.11 Feasibility Analysis 20

4.11.1 Unsupervised Learning: 20
4.11.2 Providing Topics/Probability Likelihoods: 20
4.11.3 Trainability: 20
4.11.4 Conclusion of Feasibility: 21

4.12 Project Proposed Milestones and Evaluation Criteria 21
4.13 Project Tracking Procedure 21
4.14 Test Plan 22

4.14.1 Forward Traceability Test 22
Figure 5: Test Case for Forward Traceability 22

4.14.2 Backward Traceability Test 22
Figure 6: Test Case for Backward Traceability 23

4.14.3 Bi-Directional Traceability Test 23
Figure 7: Test Case for Bi-Directional Traceability 23

4.14.4 Classification and Prediction Test 23

5. Assessment of Proposed Solution 24
5.1 Summary of suggested approaches 24
5.2 Assessment of Word2Vec and Word Mover’s Distance 24
5.3 Assessment of Glove 24
5.4 Assessment of topic modeling 25

6. Estimated Resources and Project Timeline 25
6.1 Estimated Resources 25

6.1.1 Personnel effort requirement 25
Table 1: Personnel Effort Requirement 27

6.1.2 Other resource requirement 27

 3

6.1.3 Financial requirement 27
6.2 Project Timeline 28

Figure 8: Tentative Gantt Chart 29

7. Standards 30
7.1 Unethical Processes 30
7.2 Team and Company Interactions 30
7.3 Security 30

8. Closure Material 31
8.1 Closing Summary 31
8.2 References 32

 4

List of Figures
1. Figure 1: Use Case Diagram
2. Figure 2: Autonomous Software Code Generation
3. Figure 3: Block Diagram
4. Figure 4: Results from GloVE Algorithm
5. Figure 5: Test Case for Backward Traceability
6. Figure 7: Test Case for Bi-Directional Traceability
7. Figure 8: Tentative Gantt Chart

List of Table
1. Table 1:Personnel Effort Requirement

List of Symbols
1. Symbols 1: is trainingxi
2. Symbols 2: Le is a set of existing links
3. Symbols 3:Lp is a set of predicted links
4. Symbols 4: ∩ intersection
5. Symbols 5: is a slack variable that allows x to be misclassif ied if necessaryξi i

 5

List of Definition & Acronyms
1. Requirement Tracing

The process of tracing or recording the links between the higher level requirement system
with other individual lower or other higher level requirement system.

2. Requirement Gathering

The process of gathering the specification as the requirements such as use cases, higher
level requirement, functional requirement, technical requirement and many more from the
stakeholders that will be used as the formal data for requirement tracing.

3. Supervised learning

Machine learning task to related every input with a desired learned output based on the
example output input pair.

4. Unsupervised learning

Machine learning task to draw inferences from dataset that includes inputs with no
labeled response.

5. NLTK

The Natural Language Toolkit. A python library that was used for stop words.

6. Confusion Matrix

It is a table with rows and columns that reports the number of false positives (FP), false
negatives (FN), true positives (TP), and true negatives (TN).

 7. LDA - Latent Dirichlet Allocation, one of the method for Topic Modelling

 6

1. Introductory Material

1.1 Acknowledgement
We want to acknowledge all our clients at Collins Aerospace, specially to Jason Wong, Kathleen Knott,
and Branden Lange for supporting us and providing us with feedbacks and resources for carrying out the
project. We also want to acknowledge our faculty advisor Dr. Simanta Mitra for guiding through the
development process, college of engineering and Dr. Thomas Daniels for providing us guidance, expertise
and necessary hosting resources.

1.2 Problem Statement
Requirement tracing, which is the process of creating logical links between individual

requirements, is essential in projects carried out by Collins Aerospace. When working with safety critical
systems, it must be ensured that all necessary features are recognized, that no unnecessary features are
included, and that we can link the reasoning for including a component to a higher feature. Projects at
Collins Aerospace may include thousands of requirements, most of which link to one or more other
requirements. As of today, employees at Collins create and review these requirements by hand or with
“non-intelligent” tools. Manually reviewing the accuracy of a requirement trace and deciding which links
are good and which need to be removed is extremely expensive in terms of the time that must be
dedicated to ensure that the requirement trace is sufficient for the project at hand. The purpose of this
Capstone project is to develop a tool for Collins in order to automate requirement trace analysis.

Our proposed solution to this problem is to utilize the topic modeling functions of the Gensim
Python library. These algorithms analyze the similarities between text by determining the topic of the text
through natural language processing techniques that analyze the context, and comparing the determined
topic to the topics of relating to other texts in order to calculate similarity. Our tool will take multiple
Excel documents as input, which specify all individual requirements and the other requirements that each
are linked to. By using the gensim libraries, we will be able to generate similarities between the linked
requirements and feed them into a model which will then flag the link as either good, bad, or suspicious.
The tool will also recommend possible links for requirements which may have had a bad link or if it finds
a very likely match. Finally, a file containing a report generated by the analysis will be stored for the user
to view.

 7

2. Project Deliverables and Specifications

2.1 Deliverables:
Collins Aerospace will be provided with the following deliverables:

● Well commented source code
● Executable for the Tool (batch file)
● Instruction Manual such as written documentation
● Step-by-Step video instruction manual on how to rebuild the executable and how to setup the tool

○ Updated READ_ME.txt file with a list of required tools and libraries such as follows:
■ Python 3.7
■ Anaconda 3
■ Gensim
■ Matplotlib
■ Pandas
■ Numpy
■ NLTK
■ Scikit learn
■ Spacy
■ Scipy

● Step-by-Step video on how to use the tool
○ Short Tutorials on different segments of the tools in order to help the engineer at Collins

Aerospace to quickly grasp the tool
● Updated UML Diagram, Use Case Diagram, Block Diagram
● Documentation related to the algorithms like Word2Vec, Word Mover Distance, GloVE,

Sentence Encoding, Topic Modeling. The following document will include a brief explanation to
all the above algorithms along with their pros and cons related to the project. Moreover, it will
also include a status related to the use of the algorithm based on the project’s final result.

● Deliver a live presentation of the final product

2.2 Project Specification

2.2.1 Operating environment
Collins Aerospace Artificial Intelligence for Requirement Analysis Tool is a software based

project. The tool will be operated on the Collins Aerospace server. The user will operate the tool using a
command line. Any operating system that has a basic command line would work. The tool will require
python3.7, gensim, scikit learn, scipy, spacy, matplotlib, nltk, anaconda 3 and Windows/Linux/iOS
operating system to function as per the requirements. The following tool process a sensational data related

 8

to security which needs the tool to be highly secure. Thus, secure environment along with a securely
implemented tool is a must.

2.2.2 Intended Users and Use Cases

Figure 1: Use Case Diagram
Intended Users:

The engineers at different departments at Collins Aerospace will be using the tool. Each
department will have their own tool configured separately. Thus, every engineer would access the tool as
a common user.

Intended Uses:

Artificial Intelligence for requirement analysis tools is a software based tool that will be used as
requirement tracing. The main uses of this tool is to classify the higher level requirement link and lower
level requirement links as good, bad and suspicious. Moreover, it will also provide a prediction of lower
level requirement links that relates to the higher level requirement. At the end of the analysis and
prediction process, a report will be generated mentioning the good, bad, and suspicious link along with
the prediction of the links.

 9

2.2.3 Assumptions and Limitation
Assumptions:

● A configuration file mentioning the higher level platform and lower level platform and
how they relate will be provided in the form of settings.py.

● The user will operate the command line when new data is been throw into the AI.
● A group of users will use the tool as a single type of user, any amount of groups can

access the tools.
● Clean and readable output will be provided, representing the data with an appropriate

color coding along with detailed labeling.

Limitations:

● The size of the data varies from department to department.
● The format of the input file will vary.
● The training model needs to be configured continuously in order to make the Artificial

Intelligence tool continue to learn newly updated terms and definitions.

 10

3. Previous Work and Literature Review
Requirement Tracing using Artificial Intelligence has been followed by various companies based

on their requirement. Research has been conducted on algorithms to use for requirement tracing analysis.
We referenced few of them. However, the closet one we referenced most of the time was “Use of
Artificial Intelligence in Software Development Life Cycle”[1].

Figure 2: Autonomous Generation Code Generation Framework
The following figure is taken from the journal introduced in “Use of Artificial Intelligence in Software
Development Life Cycle”[1]. In the following research, the system development stage is broken into three
different stages: Requirements Analysis, Architectural and Detailed Design, and Design Implementation
& Integration. In the Requirement Analysis stage, a requirement is been read, once the specifications are
read, physical configuration and system operations takes place. After the specified operations are
completed, a model is been trained based on the use cases, scenarios, and actors. The trained model is

 11

passed onto Architectural and Detailed Design stage. In these stage, all the processed data is been taken as
data. Moreover, software components are been introduced with system functionalities along with
protocols and event data based on the previous scenarios obtained from the trained model. Once the
Architectural and Detailed Design stage is completed, the system functions, protocols and event datas,
and execution orders are transferred to the Design Implementation and Integration stage. In this stage, the
function are implementation into the software, and a state machine software code is been generated which
will be passed onto the software integration.

Another research that we looked into is from “Tracing Requirements as a problem of machine
learning”[2]. The following research is based on the traceability approach. It explains the relation between
the higher level requirement and the lower requirement. The classifier of the link is broken into parts,
such as, the classifier is trained based on the four folds and is been tested and evaluated based on the
remaining one. Moreover, every instance is represented as similar words, different words, verb pairs, verb
group pairs, noun pairs, noun group pairs, and dependency pairs. Later in the research documentation, to
understand the rationale framework, they introduces a formula as follows:

“ + C 2
1 w| |2 ∑

i
ξi i C w ξ∀ : i · xi ≥ 1 − ξi, i ≻ 0

, ;is trainingxi − , } is the class label of xC i ∈ { 1 1 i
 is a slack variable that allows x to be misclassif ied if necessary , and C 0 is the misclassif ication penaltyξi i >

”[2]

Based on the above classification, the researchers worked on the traceability of the requirements. Few of
the approach was supervised learning and some was based on the unsupervised learning.

The artificially intelligent requirement analysis tool is a completely new project for Collins
Aerospace, therefore we began this project from scratch and did not have any previous work to build our
system off of. We reviewed documentation from similar projects that have been implemented in the past,
and found a variety of other natural language processing tools that had been developed in order to take an
artificially intelligent approach toward requirement analysis.

Our project reflects somewhat of the above descriptions. However, it has a different approach.
The dataset provided to us contains manually created acronyms and flags by the Collins Aerospace
engineers. Thus, these acronyms and flags are difficult to consider as a “natural language” wordings. Such
acronyms and flags needs to be learned by the training model in order to classify and predict with high
accuracy. For the same purpose, we will be using a bit of supervised as well as unsupervised learning
algorithms. Topic modellings and sentence encoding similarities algorithms will be implemented in
classifying the links as good, bad and suspicious. Moreover, these algorithms will be used to predict the
links related to the higher level requirement.

 12

4. Proposed Design/Solution

4.1 High Level Block Diagram

Figure 3: Block Diagram for AI-RAT System

4.1.1 Command Line Input
The tool will be launched via a .bat file. Therefore, the user will interact with the tool via the

command line. Having the tool accessible via the command line is beneficial because it allows for easy
automation/scheduling for analysis of various projects. The user will run our executable with the
requirements directory they would like to analyze as a parameter.

4.1.2 Requirement Directory Parser
Once the tool has been called with the requirement directory as a parameter, the designated

directory must be parsed and cleaned before topic modeling occurs. Since not each requirement directory
is formatted in the same way, the directory will contain a file containing parsing rules for the directory.
Once requirements are extracted, they will be cleaned and passed to the Topic Modeling Module.

4.1.3 Topic Modeling Module
The Topic Modeling Module is fairly straight forward. The module will receive clean

requirement data from the parser, then proceed with a method call to the Gensim library. The Topic
Modeling Module will call the Gensim LDA topic modeling method to return a topic model for the given
directory. Once our topic model is created, the model is passed to the Link Classification Algorithm to be
used for analyzing the requirements in the project.

 13

4.1.4 Gensim Library for Topic Modeling
The Gensim python library is written to aid machine learning projects. From this library, we will

be using the topic modeling API to train our model. The API can be found in reference [8].

4.1.5 Link Classification Algorithm
The Link Classification Algorithm will be made simple by the topic modeling approach. The

algorithm will iterate over each link of requirements and use the previously generated topic model to
produce a likelihood that the given link is good. Since the quality of the link is provided as a likelihood,
we can create thresholds to create additional classifications such as suspicious links and bad links. For an
example, links with a likelihood of > 70% would be classified as good links while a likelihood in the
range (50%-70%) would be marked as suspicious. Finally, any likelihood of below 50% would be
considered as a bad link. Along with this statistic for each link, the topic modeling approach will make
suggesting similar links very easy, as it can list the x most similar links by likelihood. This data will all be
sent to the reports module when the analysis process is finished.

4.1.6 Reports Module
The Reports Module wraps up the process by generating a report of the tools findings. The reports

will be stored as a csv file inside the Report Storage Directory where the users will have access to them.
Reports will contain classifications of every link from the input directory, along with the link’s respective
object IDs, requirement texts, and the likelihood that was used to make the links classification. Secondly,
the reports will contain suggestions for links should there be a strong likelihood between requirements
that are not linked already. Should it be desired, information about the model created to analyze the
requirements may be stored here as well.

4.1.7 Report Storage Directory
When a new project directory is analyzed with this tool, a new directory will be created within the

Report Storage Directory to store that project’s reports. The next time that the project directory is
analyzed, the reports will be versioned and stored in the same directory, so that a history may be stored
for runs of each project.

4.2 Functional Requirement
● Tool should be able to identify the links as good, bad and suspicious
● Tool should be able to predict the related links to higher level requirement links
● Tool should be easy to configure between the teams
● Tool must be executable using command line
● Tool must be easily deployable on new machines
● The tool is able to handle or negate out of vocabulary words

 14

4.3 Constraints Consideration
Collins Aerospace are dedicated clients to the defense of the United States of America. For the

same reason, they must create data constraints to a student managed project outside the campus of the
Collins Aerospace. Following are the limitation that needs to be considered:

4.3.1 Limited Access to Data
Being a defense oriented organization, the information contained in Collins Aerospace’s

requirement datasets is classified and access is strictly limited to employees of Collins. Thus, in an
outsourced student project, it is difficult to share data with students due to these limitations. Sharing such
data could result in a security issue, not just for the company, but for the United States as well. Thus, we
have only been provided with a small fraction of data that has been approved by the Collins Aerospace.

4.3.2 On Campus Accessibility of Restricted Data
As the requirement data shared with us by the Collins Aerospace is classified, we are only

allowed to access their data when we are present in their research facility. Thus, we have been been full
time students and part-time employees. When we need to test the software, we must make appointments
when all the team members are available to visit the Collins Aerospace research facility in the Iowa State
research park. Thus, data accessibility has become a time constraint.

4.4 Technology Consideration
Effectively training a model will require feeding it a large quantity of training data. Processing

this information and using it to train the model will require high processing power which not all
technology will have. We will have to keep this in consideration to make sure we have efficient platforms
to train our models in a reasonable amount of time.

4.5 Security Consideration
This tool will be used by Collins Aerospace, which is a government facility that advances the

country’s military and aerospace technology. The input to the tool will be requirements for their projects
which should not be exposed in any way to the public or other companies. Keeping this data secure will
be critical for our project.

4.6 Safety Consideration
Since this project is entirely software based, we will not be working with any components other

than our computers, therefore there are no safety considerations that need to be taken into account. There
is also no safety considerations for the user, since the end product will be a software tool.

 15

4.7 Technical Approach Consideration
Most of the experiments we have done so far are unsupervised learning. We have considered supervised
learning as well since that would solve the problem that unsupervised learning could become a black box
that we don’t exactly know how it works. However, the problem with supervised learning for our project
is that unless the program knows what the project is exactly about the program won’t be able to
effectively use the labels (the file that contains links)

4.7.1 General Approach
Data analysis is an important aspect of the project. In order to perform the related tasked we

decided to have a general approach that includes data cleaning, exploratory data analysis and lastly the
prediction [9].

For data cleaning phase, we lowercase all the words and remove all punctuations. We also found
that only taking nouns in the REQ/UC effectively filters out unimportant words. For example, “system
shall implement a bcc capability on the linux mail server” would be cleaned to “system bcc linux mail
server”. It’s obvious that only keywords are taken and this would make the prediction much more
accurate.

For exploratory data analysis, we made a wordcloud of most frequently used words. This step
makes it easy to figure out what words that should be regarded as stop words.

For the last step we have experimented with various methods such as word2vec/word mover's
distance, doc2vec, glove, and topic modeling.

4.7.2 Word2Vec & Word Movers Distance
Word2Vec is a word embedding software which we used via the Gensim python library. In short,

textual data is first provided to a Word2Vec model. From there, the model creates unique vectors which
store the “meaning” or context of each provided word. Words of similar meaning or context will be
located in the same general vector space. More in depth explanation and visualization can be found in
reference [6].

Once the Word2Vec model is trained, the Word Mover’s Distance algorithm comes into play to
calculate similarity between texts, or in our case, requirements. Word Mover’s Distance uses the
Word2Vec vectors from the first text, and then finds the minimum distance to translate to the Word2Vec
vectors in the second text. The smaller the distance it takes Word Mover’s Distance to translate between
the sentences, the more similar they are. More in depth explanation and visualization can be found in
reference [7].

The idea behind using Word2Vec and Word Mover’s Distance is that requirements that should be
linked, should have text that are similar. This approach failed us for two major reasons. First off, Collins
requirement data contains several acronyms and flags. Whenever a new acronym or flag is seen, the
model would need to be retrained to account for the new words. The problem is that there must be

 16

extensive data to accurately capture the context/meaning of the flag, which was not available. Secondly,
requirement data at Collins is not written in such a way that the algorithm will succeed. The algorithm
thrives with sentences which are rephrasings of each other, but requirement texts varied too much for the
algorithm to pick up similarity regardless of whether the links were classified as good or bad.

4.7.3 Doc2Vec
Doc2vec is based on word2vec, but the difference is that it considers the word order into account. With
the dependency of Word2Vec, the result was similar to Word2Vec and Word Mover’s Distance. So we
decided to move on with different approaches. The lessons learned is that word orders do not matter in
requirements tracing.

4.7.4 GloVe
GloVe, short for Global Vectors, is a common approach for determining the semantic similarity

of words. This comparison is done through embedding the words to be compared,then calculating the
cosine similarity between them (e.g. the cosine of the angle between two vectors of a product space that
can be used to measure the similarity between the vectors) based on their positions in the
multi-dimensional global vectors. The cosine similarity is returned as a decimal number representing the
similarity of the words, where two of the same words are given the maximum similarity value of 1. For
example, when comparing the words “man” and “woman”, the resulting cosine similarity would be very
large, but very small if you were comparing two completely unrelated words. This similarity comparison
approach is very similar to Word2Vec (which is discussed in section 4.7.2). Though GloVe is very
effective in calculating the similarity between two words, it is not nearly as effective in computing
semantic similarity of sentences due to the fact that it computes similarity based solely on the similarity
between words in a sentence but does not take into consideration the context in which those words are
being used.

Studies comparing Word2Vec and GloVe ability to perform sentence comparisons have been
conducted by Yves Piersman[5], and have concluded that Word2Vec is actually the better option when
comparing sentence similarity, even though it is still not very good. The results showed that the average
similarity of good links was very close to the average similarity of bad links, which would not allow us to
effectively distinguish whether a link was good or bad in order to officially classify it. A screenshot of the
results from an experiment we ran on a small set of requirement data can be seen below, displaying that
the average similarity for good links (the total sum of the similarity / the total number of good links) and
the average similarity of bad links only vary by 0.02418, making the two classifications indistinguishable
from each other. After this experiment failed, we decided that we needed to take a different approach
towards natural language processing, and try to find a method to compare sentences based on the topic of
the content rather than strictly on the similarity of the text.

 17

Figure 4: Results from GloVe experiment

4.7.4 Topic Modeling
The idea of topic modeling came up in our discussion after the experiments that showed that

word2vec, WMD, and Glove which are the approaches that directly compare the similarity of texts turned
out to make really bad predictions. Topic modeling approach, on the other hand, doesn’t directly compare
the similarity of two texts. Instead, it compares the topic probability distribution of two texts. So far it is
showing some interesting results and we are focusing on this approach.

We have used the most popular topic model called Latent Dirichlet allocation (LDA). It puts that
each document (in our case, each REQ/UC) is a mixture of a small number of topics with weight and each
topic constitutes of small number of related words with weight. [4]

There are multiple factors to consider in topic modeling. There are mainly two things we need to
consider: 1) how to make topics and 2) how to compare topics. We performed experiments with slightly
different variations and the following is what we have tried.

Topic modeling experiment 1 - Separate LDA models for REQs and UCs

1. Find top N most used words and prompt engineers to choose stop words (this technique would
apply to any kind of algorithms we would use)

- eg. we probably don’t need “shall” in REQ and “user” in UC
- maybe completely remove any verbs

2. Somehow unify similar words
- eg. unify “misspell”, “misspells”, “misspelling”, “misspelled” into “misspell”

3. Make separate LDA models for REQs and UCS
4. Compare the probability distribution of words for each topic for each req for each uc
5. Each REQ chooses top X similar UCs

Topic Modeling Experiment 2 - One LDA model for both REQ/UC

1. Filter out all words except nouns
2. Combine REQs and UCs into one table
3. Make a LDA model with N topics
4. Choose the topic which has the highest score for each REQ/UC
5. For each REQ, find UCs that are in the same topic

Topic Modeling Experiment 3 - Same as Experiment 2 except that for step 4 and 5, we compare the
probability distribution of topics.

 18

For example, assume we find three topics for the requirement data. REQ1 has a topic distribution of { (0,
0.5), (1, 0.25), (2, 0.25) } and UC1 has a topic distribution of { (0, 0.25), (1, 0.25), (2, 0.5) } and UC2 has
a topic distribution of { (0, 0.6), (1, 0.2), (2, 0.2) }, where topic distribution is a set of tuples and each
tuple represents pair of the topic index and its weight. We now use the method of least squares to
calculate the distance of these REQ/UC.

For REQ1 and UC1, 0.5 .25) 0.25 .25) 0.25 .5) .125(− 0 2 + (− 0 2 + (− 0 2 = 0

For REQ1 and UC2, 0.5 .6) 0.25 .2) 0.25 .2) .015(− 0 2 + (− 0 2 + (− 0 2 = 0

Thus UC2 is the better link for REQ1 because it is closer in similarity.

4.8 Validation and Acceptance Test
Development of standard accuracy calculation methods, which are necessary to effectively

compare the performances of different algorithms, is mission-critical. We have tried various methods for
testing and we will talk about the pros/cons of each method.

The following are some of the suggested methods. For all of the following methods, we assume
that the test data is perfect, meaning that only good links are listed for each requirement and there are no
missing links within the file.

☖ Most naive accuracy measure:

1. For each REQ, check if one of the predicted links is in the set of existing links
2. If so, mark this requirement as 1, otherwise 0.
3. Take sum of these values for all requirements and take average.

It’s computationally cheap to calculate this. However, the problem of this measure is that it is such an
easy grading. It needs to be more strict to effectively measure the accuracy.

☖ Simple accuracy measure:

1. For each REQ, Take top N predictions, where N is the number of existing links.
2. Calculate Accuracy = (# of correct predictions) / (# of all predictions) for each REQ.
3. Take average of that measure for all REQs.

It’s also computationally cheap to calculate this. However, the problem is that it only considers good
links.

☖ Another simple measure using set theory concept:

1. Accuracy = (Le ∩ Lp) / (Le ⋃ Lp), where Le is a set of existing links and Lp is a set of predicted
links. [(Correct prediction) / (correct + wrong predictions)]

2. Again, take average of it

☖ Measure using confusion matrix [3]:

1. For each REQ, calculate accuracy = (TP + TN) / (TP + TN + FP + FN)
2. Take average of them

 19

Since we have the problem of not considering bad links, we developed another measure using confusion
matrix. Creating a confusion matrix is an ideal approach because it can reveal lots of information about
the model with just a simple graph. Important statistics that will by analyzed from the confusion matrix
will be overall accuracy of the model, number of false positives, and number of true negatives. Analysing
these statistics will tell us how we need to calibrate the model for better results, or if the approach needs
to be rethought as a whole.

So far this is the most reliable method we can think of. However, the problem is that it takes significant
human effort since we need to manually select really bad links, the links that seem very different from the
requirement. For prototyping we should use one of the accuracy calculation measures listed above.

4.9 Cost Consideration
In the context of our project, there are not any cost considerations to take into account. All of the

technologies we are using to build our tool (e.g. Python for the programming language, as well as libraries
such as NLTK, Word2Vec, SpaCy, etc) are all free to use, so Collins Aerospace and our design team do
not need to consider the costs of purchasing technologies in order to build our tool.

4.10 Possible Risks and Risk Management

4.10.1 Risks

This project is considered to be safety critical since the requirement information that it will
ultimately be analyzing once implemented by Collins Aerospace is highly classified information.
Therefore, the main risks of this project pertain to security. We must be sure that it is impossible for any
individual outside the employees of Collins Aerospace to be able to access any information that is input
into our tool (e.g. the documents containing details of requirements and use cases for a certain project) or
output from our tool (e.g. the analysis of the given requirement trace and recommended additional use
case links for any requirements).

We must also be sure that our analysis algorithms are implemented as accurately as possible.
Collins Aerospace will be relying on this tool to analyze their requirement traces for projects that rely on
these traces being extremely accurate, so one of the biggest risks in this project is a failure in one of our
algorithms causing a good requirement link to be classified as a bad requirement link or causing a bad
requirement link to be classified as a good requirement link, and having this requirement trace get carried
forward in the project.

 20

4.10.2 Risk Management

In terms of security risks, we will need to have further discussion with our contacts at Collins
Aerospace in order to determine our mitigation strategy. Since Collins is a very large corporation that has
developed many safety critical projects, it would make sense that they have a standard, or at least certain
requirements, on how to implement their security software. They will either be able to provide us with
guidelines on how to implement this ourselves, or may hand the project over to their cyber-security
experts and implement these features internally.

While there is no guarantee that link classification will always be perfect, we are mitigating the
risk of incorrect classifications by continuing to research different similarity algorithms and testing their
accuracy against each other. Over the course of next semester, we will make a final decision of what
algorithm we will use in our final implementation based on the results of our experiments.

4.11 Feasibility Analysis
The feasibility of the topic modeling approach cannot be completely determined as of the current

point of the project. With that being said, it is the most reasonable approach that we have considered so
far on the following terms:

4.11.1 Unsupervised Learning:
Topic modeling is an ideal solution due to the fact that it is under the category of unsupervised

learning. Due to the randomness and variance of the requirement data between projects, there is a lack of
solid features that could be picked to define a likelihood that a given link is good or bad. Using
unsupervised learning will allow us to train a model which picks an appropriate set of topic distributions
for any given directory no matter how they were written on for that project.

While this provides an interesting advantage for our project, it also creates concerns. Since we are
not in control of how the model creates these topics, there is no way to know that it will be choosing
topics in a way that models links between requirements. This is not something we will know until more
testing is performed for this approach on Collins Aerospace requirement data.

4.11.2 Providing Topics/Probability Likelihoods:
Another positive aspect of using the topic modeling approach is how the model represents data.

The topic model outputs probability distributions to topics for any given requirement we query. This
allows us to easily suggest possible links according to the topic probability distribution output. It also
allows us to easily compare two requirements probability distribution to determine whether they should
be linked or not. Since we are defining the process for classifying links as good or bad, we can also create
our own threshold of what should be classified as a good, bad, or even suspicious link. Overall, the
outputs of the model will be easy for us to work with in terms of both classifications and suggestions.

 21

4.11.3 Trainability:
This approach eliminates the problem of out of vocabulary words which we have run into with

previous solutions such as word2vec and glove. Collins Aerospace requirements include flags and
acronyms which are continuously introduced. When these are encountered, there is no way to train the
models on words without extensive training data. The problem, however, is since these flags and
acronyms were just created, there's no efficient way to train on them which renders them difficult to
manage. The topic modeling approach does not rely on learning the meaning of individual words. Instead,
it picks similarities in the provided data to define topics with, allowing it to eliminate the roadblock of out
of vocabulary words.

4.11.4 Conclusion of Feasibility:
Over all, this approach seems feasible and may be promising in finding a solution towards

analyzing Collins requirement data. Topic modeling allows for unsupervised learning, to account for the
variance in data; has conveniently structured outputs for us to use in classification and suggestions; and
also removes roadblocks such as out of vocabulary words. However there is some concern which will
need to be tested for whether the approach can consistently and accurately model requirement data.

4.12 Project Proposed Milestones and Evaluation Criteria
Milestone 1: Research Machine Learning Algorithm for Requirement Traceability

Milestone 2: Experiment on Milestone 1

Milestone 3: Analyze the result obtained in Milestone 2

Milestone 4: Design the Algorithms and Interfaces for the primary requirements

Milestone 5: Develop the software with primary requirements

Milestone 6: Create Testing Modules

Milestone 7: Determine Secondary Requirements

Milestone 8: Implement secondary requirement

Milestone 9: Create testing modules for secondary requirements

Milestone 10: Create Testing Module for software with primary and secondary requirement.

Milestone 11: Code Review, software review, required instruction manual and videos for
demonstration.

MIlestone 12: Final review and presentation

 22

4.13 Project Tracking Procedure
Our team is using the agile development methodology for this project with a two week sprint

duration. In order to track progress on individual tasks, our team set up a Jira server. With Jira, we are
able to create tickets for each task in the current sprint and assign those tasks to members of the group.
We have also created a Git repository for version control purposes, where we all push experiments to our
own individual branches and then merge our work to the master branch once we have finished
implementing a certain functionality.

4.14 Test Plan
As the part of the project is related to the traceability. The traceability needs to be worked in

forward, backward and also in bi-directional. Test Modules will be created for each of them which are
introduced below.

4.14.1 Forward Traceability Test
As forward traceability test, the software needs to verify if it could map the higher level

requirement only to a lower level requirement. Test cases will be created keeping in mind the example
show below:

Figure 5: Test Case for Forward Traceability

Thus, it will test if the higher level is been correctly mapped with a lower level use case.

 23

4.14.2 Backward Traceability Test
As backward traceability test, the software will need to verify if it could relate the lower level use

case with its higher level requirement efficiently. Test cases needs to be created keeping in mind the
example shown below:

Figure 6: Test Case for Backward Traceability

Thus, a test case will be created to check if lower level use case traces back to its desired higher level
requirement.

4.14.3 Bi-Directional Traceability Test
Bi-directional traceability test will test if both higher level requirement and the lower level

requirement traces back to each other. Thus, test cases will be created keeping in mind the following
scenario as shown below:

Figure 7: Test Case for Bi-Directional Traceability

Thus, a test case will be created to confirm that bi-directional traceability functionality.

 24

4.14.4 Classification and Prediction Test
We will test the classifier by doing a series of 80/20 training/test data splits and generating

confusion matrix on each run. An 80/20 training test split means that we will choose 80% of the data to
train the model, chosen at random. Once the model is trained, the model will attempt to classify the rest of
the 20% of data. We will monitor how the model classifies the 20% of test data and generate confusion
matrix on it which gives us statistics on how the model is performing, including accuracy statistics.

5. Assessment of Proposed Solution
5.1 Summary of suggested approaches

We first came up with solutions using word2vec/WMD approach using a pretrained model. It turns out it
is difficult since the pretrained model doesn’t contain a lot of technical terms, acronyms, and flags that are
in the requirements data. Retraining the model is difficult since the model has already learned many
vocabulary and its connections. Another problem we faced is the fact that we have to deal with bad links.
We then trained model on our own dataset but the result shows low accuracy. Then we figured that
basically the problem is directly comparing texts. So we came up with a different approach that indirectly
compare the text similarity, one of them is topic modeling. Heavy preprocessing is necessary to
effectively find the text similarity. This is currently the state of our research project. We are actively
researching topic modeling as well as other deep learning methods like recurrent neural network (RNN).
We are also investigating the possibility of supervised learning, which also takes the existing links into
account when training the model.

5.2 Assessment of Word2Vec and Word Mover’s Distance
Word2Vec paired with Word Mover’s Distance, as stated in section 4.7.2, proved not to be the

best combination to solve our problem. Word Mover’s Distance is build more so to identify rephrasings of
sentences as similar, or even sentences with the general same meaning/context. However, this is not how
Collins Aerospace writes their requirements. All requirements, whether classified as a good or bad link,
returns within the same range of Word Mover’s Distance. This tells us that the algorithms does not tell a
difference between good and bad links by soley looking at the context of the requirements text. A better
solution will find characteristics of good links and bad links and will create a classifier from those
characteristics.

 25

5.3 Assessment of Glove
After implementing GloVe and experimenting on the small requirement dataset, the results were

very similar to the experiments we performed that implemented Word2Vec with Word Mover’s Distance.
Relying on cosine similarity between vectors can be very effective in comparing individual words, but
when comparing an entire sentence, a cosine similarity calculation of each word cannot effectively take
into consideration the context or topic of the full sentence. Even after the removal of stop words (e.g.
common words that appear in almost any English sentence such as ‘a’ or ‘the’), the average similarity of
good links and average similarity of bad links varied by a very insignificant amount, making the two
classifications indistinguishable based on the similarity calculations produced from the implementation of
GloVe. In our case, as well as in the study [5] referenced below, GloVe and Word2Vec performed
similarly when computing sentence similarity, but were not considered sufficient. It may be that there is
more preprocessing work to be done rather than just filtering out stopwords, or filtering out any word that
is not a noun. GloVe allows you to define your own custom global vectors, so with more experimentation
it is possible that we discover a way to utilize these custom definitions in order to more effectively
classify links.

5.4 Assessment of topic modeling
Topic modeling experiment 1: The purpose of this experiment was to show the feasibility of topic

modeling and it hopefully works better than existing approaches that directly compares the REQs/UCs.
But it got to the problem that we are not sure how to compare two separate topic models. Topics are a set
of words with weight. However, LDA doesn’t tell the difference between, for example, ‘user and ‘users’.
We can use some pre-trained word2vec model for this problem but it is going to be really complex
process. For example, how do we decide which word to unify similar words? We eventually gave up on
this approach.

Topic modeling experiment 2: This experiment was done as a response to experiment 2. Instead
of making separate models for REQs and UCs we can just make one model. This way we don’t need to
worry about figuring out to compare separate topic models. This idea made it much easier to implement
the algorithm and we were successful in making something working. Our result using naive accuracy
measure shows that it’s got accuracy of 57%.

Topic modeling experiment 3: This experiment was done as a response to experiment 3. The
difference is that instead of taking the topic with the highest weight and compare the UCs using that topic,
we compare the topic probability distributions. This shows better accuracy than topic model 2.

Other than all these topic modeling experiments we have done, we should definitely train bigger
data and see the accuracy of our approaches.

 26

6. Estimated Resources and Project Timeline

6.1 Estimated Resources

6.1.1 Personnel effort requirement

Task Description Effort Needed

Research Learning Algorithm Research on algorithms that are
available for sentence similarity

Most of the research done so far
has turned out to be negative of
what we wanted so far. Also,
since none of the team member
is highly educated on the
machine learning aspect of
software development. It is very
important for each of the team
member to understand and
research on the algorithms
efficiently

Experiment Learning Algorithm Conduct experiments on the
research related to the machine
learning algorithms

The gensim library includes
many of the algorithms that we
will conduct the experiment on.
However, there are few
experiments that needs to be
conducted out of the gensim
library in order to make the
algorithm more efficient and
functionable as per the
requirement.

Analyze the experiment Once the experiment is been
conducted, it should be analysed
as per the client’s requirement

Since the project has very strict
and specific requirements, once
we have seen how each
algorithm works through
research and experimentation,
we will decided which
algorithms best suit the client’s
needs.

Design Algorithms After deciding on the best
learning algorithm, we must
design an algorithms that

There will be a considerable
amount of attention given to this
task. The algorithm designed

 27

analyzes the similarity computed
by the learning algorithm in
order to flag requirement links
as good, bad or suspicious. The
algorithm must also identify
requirements that do not have
any links and based on
computed sentence similarity.

here will define the efficiency of
the most of the system. With
that been said, we want this to
be as efficient as we can
possibly make it. Once an
algorithm is created, it may
continue to be improved until
the end of the project.

Test the Design Algorithm Once the algorithm is been
decided, testing the algorithm
will take place

Implementation of the Designed
Algorithms needs to be
performed in python3.7 using
necessary libraries. Once the
implementation is done, testing
on different test cases or using a
junit or mockito needs to be
performed.

Begin Developing Modules Write Modules for the project Implement modules irrespective
of the size. Some of them are
large and will be time
consuming, however others will
be pretty straightforward to
implement

Test Modules After implementation of
Modules, thoroughly test it to
ensure that it meets the expected
requirements

Testing will require much
attention during the
development process. We will
need to ensure that all the
desired requirements by our
clients are met. Thus, we must
develop test cases for each of the
requirement and analyze it
thoroughly.

Insert Tested Modules into
project structure

Once a module has been
completed, we will merge it with
other finalized modules in order
to continue to add to the final
build of the project.

This step is very
straightforward, since it only
requires pushing our work into
the repository where we are
storing the finalized project
modules.

Table 1: Personnel Effort Requirement

 28

6.1.2 Other resource requirement
Jira is used as an external resource for project management process. In order to host jira, we are

using an apache web server based on Linux 16.0.1 hosted at Iowa State University ITS services. Apart
from that, we are using number of libraries from python such as gensim, nltk, pandas, scikit learn, scipy,
spacy, matplotlib, numpy and few built-in libraries. For the installation process of the external libraries
supported by python, we use anaconda 3 as well as miniconda which is a package manager for
dependencies.

6.1.3 Financial requirement
This tool is developed with python and open source software. Therefore, there will be no financial

requirements to be met.

6.2 Project Timeline
Collins Aerospace has primary as well as secondary requirements. Most of the time in Spring

semester was spent on research on primary requirements. We worked on researching, experimenting,
analyzing and testing algorithms such as word2vec, word mover distance, glove, and topic modeling -
LDA. We will be continuing research, experimentation and analysation of different algorithms as well in
the second phase of the semester to improve the result. Along with that, we will be implementing the
software as a whole with testing modules. Apart from that, we will also implement secondary
requirements. Secondary requirement are still under review by Collins Aerospace. As per our client, he
will be introducing it during the next semester. Thus, the timeline below with the gantt chart is tentative
and has to be declared later based on the proposal of the secondary requirement.

 29

Figure 8: Tentative Gantt Chart

 30

7. Standards

7.1 Unethical Processes
No process that this team uses during the development of this project would be considered

unethical by organizations such as IEEE. We have taken a number of their standards including the IEEE
Standard for Software Reviews and Audits [10], and the Systems and Software Engineering Standards for
Developing Information for Users [11] into consideration in order to guide our decision making
throughout the process of development.

7.2 Team and Company Interactions
When we are holding a meeting with our contacts at Collins to demonstrate the progress made

during our previous sprint, we structure those meetings based on the standards given in the IEEE Standard
for Software Reviews and Audits [10] in order to guide our decisions on how to prepare for the meeting
by establishing roles within our team for the meeting based on those defined within these industry
standards such as the recorder who documents the discussion for later reference or the review leader who
leads the discussion when demonstrating the progress our team has made over the sprint. In terms of
internal interaction among team members, we are operating using the agile development methodology.
This includes us having frequent stand up meetings, developing user stories and use cases, and conducting
sprint meetings in order to lay out development goals for the upcoming two week sprint. When structuring
all of these artifacts and conducting these meetings, we look to the Systems and Software Engineering
Standards for Developing Information for Users in an Agile Environment [11] for guidance based on the
industry standards.

7.3 Security
As previously mentioned, we are not at a point in this project yet where we have implemented

any sort of security features, but the implementation of these features is a critical part of this project. We
will need to ask Collins Aerospace if there are any standards they have for securing their software and
will need to first consider that as a guideline. Additionally, we will refer to the IEEE Standards for
Software Safety Plans [12] in order to educate ourselves about industry standards relating to development
and maintenance of software systems.

 31

8. Closure Material

8.1 Closing Summary
Requirement Tracing is important in developing reliable softwares, especially in large

organizations such as Collins Aerospace. It helps in minimizing the efforts and errors by software
engineers on writing huge test cases, higher and lower level requirements, and mapping each other to
obtain a desired output. Collins Aerospace Artificial Intelligence for Requirement Analysis Tool will
efficiently replace the current method where engineers would have to enter the requirements and test
cases manually. Moreover, it will also reduces the human error caused during the process. Overall,
completion of this project will provide Collins Aerospace to be one of the rarest companies to achieve
artificial intelligence for requirement traceability.

 32

8.2 References
[1] Sorte, Bhagyashree W. et al. “Use of Artificial Intelligence in Software Development Life Cycle: A state of
the Art Review.” (2015).

[2] Li, Zeheng and LiGuo Huang. “Tracing Requirements as a Problem of Machine Learning.” (2018).

[3] “Confusion Matrix.” Wikipedia, Wikimedia Foundation, 4 Feb. 2019,
en.wikipedia.org/wiki/Confusion_matrix.

[4] “Latent Dirichlet Allocation.” Wikipedia, Wikimedia Foundation, 24 Apr. 2019,
en.wikipedia.org/wiki/Latent_Dirichlet_allocation.

[5] Peirsman, Yves. “Comparing Sentence Similarity Methods.” NLP Town Blog | Comparing Sentence
Similarity Methods, 2 May 2018, nlp.town/blog/sentence-similarity/.

[6] “A Beginner's Guide to Word2Vec and Neural Word Embeddings.” Skymind, skymind.ai/wiki/word2vec.

[7] Ma, Edward. “Word Distance between Word Embeddings.” Towards Data Science, Towards Data Science,
25 Aug. 2018, towardsdatascience.com/word-distance-between-word-embeddings-cc3e9cf1d632.

[8] “Gensim: Topic Modelling for Humans.” Radim ÅEhÅ¯ÅEk: Machine Learning Consulting,
radimrehurek.com/gensim/models/ldamodel.html.

[9] PyOhio. “Natural Language Processing in Python.” YouTube, YouTube, 29 July 2018,
www.youtube.com/watch?v=xvqsFTUsOmc.

[10] “1028-2008 - IEEE Standard for Software Reviews and Audits.” IEEE, Software & Systems Engineering
Standards Committee, 2008, standards.ieee.org/standard/1028-2008.html.

[11] “ISO/IEC/IEEE 26515:2018.” ISO, 12 Dec. 2018, www.iso.org/standard/70880.html.

[12] “1228-1994 - IEEE Standard for Software Safety Plans.” IEEE, 1989,
standards.ieee.org/standard/1228-1994.html.

http://www.youtube.com/watch?v=xvqsFTUsOmc

