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List of Definition & Acronyms 
1. Requirement Tracing 

The process of tracing or recording the links between the higher level requirement system 
with other individual lower or other higher level requirement system. 

2. Requirement Gathering 

The process of gathering the specification as the requirements such as use cases, higher 
level requirement, functional requirement, technical requirement and many more from the 
stakeholders that will be used as the formal data for requirement tracing.  

3. Supervised learning 

Machine learning task to related every input with a desired learned output based on the 
example output input pair. 

4. Unsupervised learning  

Machine learning task to draw inferences from dataset that includes inputs with no 
labeled response.  

5. NLTK 

The Natural Language Toolkit. A python library that was used for stop words. 

6. Confusion Matrix 

It is a table with rows and columns that reports the number of false positives (FP), false 
negatives (FN), true positives (TP), and true negatives (TN). 

      7.    LDA - Latent Dirichlet Allocation, one of the method for Topic Modelling 
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1. Introductory Material 

1.1 Acknowledgement 
We want to acknowledge all our clients at Collins Aerospace, specially to Jason Wong, Kathleen Knott, 
and Branden Lange for supporting us and providing us with feedbacks and resources for carrying out the 
project. We also want to acknowledge our faculty advisor Dr. Simanta Mitra for guiding through the 
development process, college of engineering and Dr. Thomas Daniels for providing us guidance, expertise 
and necessary hosting resources.  

1.2 Problem Statement 
Requirement tracing, which is the process of creating logical links between individual 

requirements, is essential in projects carried out by Collins Aerospace. When working with safety critical 
systems, it must be ensured that all necessary features are recognized, that no unnecessary features are 
included, and that we can link the reasoning for including a component to a higher feature. Projects at 
Collins Aerospace may include thousands of requirements, most of which link to one or more other 
requirements. As of today, employees at Collins create and review these requirements by hand or with 
“non-intelligent” tools. Manually reviewing the accuracy of a requirement trace and deciding which links 
are good and which need to be removed is extremely expensive in terms of the time that must be 
dedicated to ensure that the requirement trace is sufficient for the project at hand. The purpose of this 
Capstone project is to develop a tool for Collins in order to automate requirement trace analysis.  

Our proposed solution to this problem is to utilize the topic modeling functions of the Gensim 
Python library. These algorithms analyze the similarities between text by determining the topic of the text 
through natural language processing techniques that analyze the context, and comparing the determined 
topic to the topics of relating to other texts in order to calculate similarity. Our tool will take multiple 
Excel documents as input, which specify all individual requirements and the other requirements that each 
are linked to. By using the gensim libraries, we will be able to generate similarities between the linked 
requirements and feed them into a model which will then flag the link as either good, bad, or suspicious. 
The tool will also recommend possible links for requirements which may have had a bad link or if it finds 
a very likely match. Finally, a file containing a report generated by the analysis will be stored for the user 
to view. 
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2. Project Deliverables and Specifications 

2.1 Deliverables:  
Collins Aerospace will be provided with the following deliverables:  

● Well commented source code 
● Executable for the Tool (batch file)  
● Instruction Manual such as written documentation  
● Step-by-Step video instruction manual on how to rebuild the executable and how to setup the tool 

○ Updated READ_ME.txt file with a list of required tools and libraries such as follows:  
■ Python 3.7  
■ Anaconda 3  
■ Gensim  
■ Matplotlib  
■ Pandas 
■ Numpy  
■ NLTK 
■ Scikit learn  
■ Spacy  
■ Scipy 

● Step-by-Step video on how to use the tool 
○ Short Tutorials on different segments of the tools in order to help the engineer at Collins 

Aerospace to quickly grasp the tool 
● Updated UML Diagram, Use Case Diagram, Block Diagram  
● Documentation related to the algorithms like Word2Vec, Word Mover Distance, GloVE, 

Sentence Encoding, Topic Modeling.  The following document will include a brief explanation to 
all the above algorithms along with their pros and cons related to the project. Moreover, it will 
also include a status related to the use of the algorithm based on the project’s final result.  

● Deliver a live presentation of the final product 

2.2 Project Specification  

2.2.1 Operating environment 
Collins Aerospace Artificial Intelligence for Requirement Analysis Tool is a software based 

project. The tool will be operated on the Collins Aerospace server. The user will operate the tool using a 
command line. Any operating system that has a basic command line would work. The tool will require 
python3.7, gensim, scikit learn, scipy, spacy, matplotlib, nltk, anaconda 3 and Windows/Linux/iOS 
operating system to function as per the requirements. The following tool process a sensational data related 
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to security which needs the tool to be highly secure. Thus, secure environment along with a securely 
implemented tool is a must.  

2.2.2 Intended Users and Use Cases 

 

Figure 1: Use Case Diagram 
Intended Users:  

The engineers at different departments at Collins Aerospace will be using the tool. Each 
department will have their own tool configured separately. Thus, every engineer would access the tool as 
a common user.  

Intended Uses:  

Artificial Intelligence for requirement analysis tools is a software based tool that will be used as 
requirement tracing. The main uses of this tool is to classify the higher level requirement link and lower 
level requirement links as good, bad and suspicious. Moreover, it will also provide a prediction of lower 
level requirement links that relates to the higher level requirement. At the end of the analysis and 
prediction process, a report will be generated mentioning the good, bad, and suspicious link along with 
the prediction of the links. 
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2.2.3 Assumptions and Limitation 
Assumptions:  

● A configuration file mentioning the higher level platform and lower level platform and 
how they relate will be provided in the form of settings.py.  

● The user will operate the command line when new data is been throw into the AI. 
● A group of users will use the tool as a single type of user, any amount of groups can 

access the tools. 
● Clean and readable output will be provided, representing the data with an appropriate 

color coding along with detailed labeling. 

Limitations:  

● The size of the data varies from department to department.  
● The format of the input file will vary. 
● The training model needs to be configured continuously in order to make the Artificial 

Intelligence tool continue to learn newly updated terms and definitions.  
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3. Previous Work and Literature Review 
Requirement Tracing using Artificial Intelligence has been followed by various companies based 

on their requirement. Research has been conducted on algorithms to use for requirement tracing analysis. 
We referenced few of them. However, the closet one we referenced most of the time was “Use of 
Artificial Intelligence in Software Development Life Cycle”[1].  

 

Figure 2: Autonomous Generation Code Generation Framework  
The following figure is taken from the journal introduced in “Use of Artificial Intelligence in Software 
Development Life Cycle”[1]. In the following research, the system development stage is broken into three 
different stages: Requirements Analysis, Architectural and Detailed Design, and Design Implementation 
& Integration. In the Requirement Analysis stage, a requirement is been read, once the specifications are 
read, physical configuration and system operations takes place. After the specified operations are 
completed, a model is been trained based on the use cases, scenarios, and actors. The trained model is 
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passed onto Architectural and Detailed Design stage. In these stage, all the processed data is been taken as 
data. Moreover, software components are been introduced with system functionalities along with 
protocols and event data based on the previous scenarios obtained from the trained model. Once the 
Architectural and Detailed Design stage is completed, the system functions, protocols and event datas, 
and execution orders are transferred to the Design Implementation and Integration stage. In this stage, the 
function are implementation into the software, and a state machine software code is been generated which 
will be passed onto the software integration.  

Another research that we looked into is from “Tracing Requirements as a problem of machine 
learning”[2]. The following research is based on the traceability approach. It explains the relation between 
the higher level requirement and the lower requirement. The classifier of the link is broken into parts, 
such as, the classifier is trained based on the four folds and is been tested and evaluated based on the 
remaining one. Moreover, every instance is represented as similar words, different words, verb pairs, verb 
group pairs, noun pairs, noun group pairs, and dependency pairs. Later in the research documentation, to 
understand the rationale framework, they introduces a formula as follows:  

“ + C      2
1 w| |2 ∑

 

i
ξi i C w ξ∀ :  i · xi ≥ 1 − ξi, i ≻ 0  

, ;is trainingxi − , } is the class label of  xC i ∈ { 1 1 i  
 is a slack variable that allows x to be misclassif ied if  necessary , and C 0 is the misclassif ication penaltyξi i  >  

”[2] 

Based on the above classification, the researchers worked on the traceability of the requirements. Few of 
the approach was supervised learning and some was based on the unsupervised learning.  

The artificially intelligent requirement analysis tool is a completely new project for Collins 
Aerospace, therefore we began this project from scratch and did not have any previous work to build our 
system off of. We reviewed documentation from similar projects that have been implemented in the past, 
and found a variety of other natural language processing tools that had been developed in order to take an 
artificially intelligent approach toward requirement analysis.  

Our project reflects somewhat of the above descriptions. However, it has a different approach. 
The dataset provided to us contains manually created acronyms and flags by the Collins Aerospace 
engineers. Thus, these acronyms and flags are difficult to consider as a “natural language” wordings. Such 
acronyms and flags needs to be learned by the training model in order to classify and predict with high 
accuracy. For the same purpose, we will be using a bit of supervised as well as unsupervised learning 
algorithms. Topic modellings and sentence encoding similarities algorithms will be implemented in 
classifying the links as good, bad and suspicious. Moreover, these algorithms will be used to predict the 
links related to the higher level requirement.  
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4. Proposed Design/Solution 

4.1 High Level Block Diagram  

 

Figure 3: Block Diagram for AI-RAT System 

4.1.1 Command Line Input 
The tool will be launched via a .bat file. Therefore, the user will interact with the tool via the 

command line. Having the tool accessible via the command line is beneficial because it allows for easy 
automation/scheduling for analysis of various projects. The user will run our executable with the 
requirements directory they would like to analyze as a parameter.  

4.1.2 Requirement Directory Parser 
Once the tool has been called with the requirement directory as a parameter, the designated 

directory must be parsed and cleaned before topic modeling occurs. Since not each requirement directory 
is formatted in the same way, the directory will contain a file containing parsing rules for the directory. 
Once requirements are extracted, they will be cleaned and passed to the Topic Modeling Module. 

4.1.3 Topic Modeling Module 
The Topic Modeling Module is fairly straight forward. The module will receive clean 

requirement data from the parser, then proceed with a method call to the Gensim library. The Topic 
Modeling Module will call the Gensim LDA topic modeling method to return a topic model for the given 
directory. Once our topic model is created, the model is passed to the Link Classification Algorithm to be 
used for analyzing the requirements in the project.  
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4.1.4 Gensim Library for Topic Modeling 
The Gensim python library is written to aid machine learning projects. From this library, we will 

be using the topic modeling API to train our model. The API can be found in reference [8]. 

4.1.5 Link Classification Algorithm 
The Link Classification Algorithm will be made simple by the topic modeling approach. The 

algorithm will iterate over each link of requirements and use the previously generated topic model to 
produce a likelihood that the given link is good. Since the quality of the link is provided as a likelihood, 
we can create thresholds to create additional classifications such as suspicious links and bad links. For an 
example, links with a likelihood of  > 70% would be classified as good links while a likelihood in the 
range (50%-70%) would be marked as suspicious. Finally, any likelihood of below 50% would be 
considered as a bad link. Along with this statistic for each link, the topic modeling approach will make 
suggesting similar links very easy, as it can list the x most similar links by likelihood. This data will all be 
sent to the reports module when the analysis process is finished. 

4.1.6 Reports Module 
The Reports Module wraps up the process by generating a report of the tools findings. The reports 

will be stored as a csv file inside the Report Storage Directory where the users will have access to them. 
Reports will contain classifications of every link from the input directory, along with the link’s respective 
object IDs, requirement texts, and the likelihood that was used to make the links classification. Secondly, 
the reports will contain suggestions for links should there be a strong likelihood between requirements 
that are not linked already. Should it be desired, information about the model created to analyze the 
requirements may be stored here as well.  

4.1.7 Report Storage Directory 
When a new project directory is analyzed with this tool, a new directory will be created within the 

Report Storage Directory to store that project’s reports. The next time that the project directory is 
analyzed, the reports will be versioned and stored in the same directory, so that a history may be stored 
for runs of each project.  

4.2 Functional Requirement 
● Tool should be able to identify the links as good, bad and suspicious  
● Tool should be able to predict the related links to higher level requirement links  
● Tool should be easy to configure between the teams  
● Tool must be executable using command line  
● Tool must be easily deployable on new machines 
● The tool is able to handle or negate out of vocabulary words 
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4.3 Constraints Consideration  
Collins Aerospace are dedicated clients to the defense of the United States of America. For the 

same reason, they must create data constraints to a student managed project outside the campus of the 
Collins Aerospace. Following are the limitation that needs to be considered:  

4.3.1 Limited Access to Data 
Being a defense oriented organization, the information contained in Collins Aerospace’s 

requirement datasets is classified and access is strictly limited to employees of Collins. Thus, in an 
outsourced student project, it is difficult to share data with students due to these limitations. Sharing such 
data could result in a security issue, not just for the company, but for the United States as well. Thus, we 
have only been provided with a small fraction of data that has been approved by the Collins Aerospace.  

4.3.2 On Campus Accessibility of Restricted Data  
As the requirement data shared with us by the Collins Aerospace is classified, we are only 

allowed to access their data when we are present in their research facility. Thus, we have been been full 
time students and part-time employees. When we need to test the software, we must make appointments 
when all the team members are available to visit the Collins Aerospace research facility in the Iowa State 
research park. Thus, data accessibility has become a time constraint.  

4.4 Technology Consideration  
Effectively training a model will require feeding it a large quantity of training data. Processing 

this information and using it to train the model will require high processing power which not all 
technology will have. We will have to keep this in consideration to make sure we have efficient platforms 
to train our models in a reasonable amount of time.  

4.5 Security Consideration  
This tool will be used by Collins Aerospace, which is a government facility that advances the 

country’s military and aerospace technology. The input to the tool will be requirements for their projects 
which should not be exposed in any way to the public or other companies. Keeping this data secure will 
be critical for our project.  

4.6 Safety Consideration  
Since this project is entirely software based, we will not be working with any components other 

than our computers, therefore there are no safety considerations that need to be taken into account. There 
is also no safety considerations for the user, since the end product will be a software tool.  
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4.7 Technical Approach Consideration  
Most of the experiments we have done so far are unsupervised learning. We have considered supervised 
learning as well since that would solve the problem that unsupervised learning could become a black box 
that we don’t exactly know how it works. However, the problem with supervised learning for our project 
is that unless the program knows what the project is exactly about the program won’t be able to 
effectively use the labels (the file that contains links) 

4.7.1 General Approach 
Data analysis is an important aspect of the project. In order to perform the related tasked we 

decided to have a general approach that includes data cleaning, exploratory data analysis and lastly the 
prediction [9].  

For data cleaning phase, we lowercase all the words and remove all punctuations. We also found 
that only taking nouns in the REQ/UC effectively filters out unimportant words. For example, “system 
shall implement a bcc capability on the linux mail server” would be cleaned to “system bcc linux mail 
server”. It’s obvious that only keywords are taken and this would make the prediction much more 
accurate. 

For exploratory data analysis, we made a wordcloud of most frequently used words. This step 
makes it easy to figure out what words that should be regarded as stop words. 

For the last step we have experimented with various methods such as word2vec/word mover's 
distance, doc2vec, glove, and topic modeling. 

4.7.2 Word2Vec & Word Movers Distance 
Word2Vec is a word embedding software which we used via the Gensim python library. In short, 

textual data is first provided to a Word2Vec model. From there, the model creates unique vectors which 
store the “meaning” or context of each provided word. Words of similar meaning or context will be 
located in the same general vector space. More in depth explanation and visualization can be found in 
reference [6].  

Once the Word2Vec model is trained, the Word Mover’s Distance algorithm comes into play to 
calculate similarity between texts, or in our case, requirements. Word Mover’s Distance uses the 
Word2Vec vectors from the first text, and then finds the minimum distance to translate to the Word2Vec 
vectors in the second text. The smaller the distance it takes Word Mover’s Distance to translate between 
the sentences, the more similar they are. More in depth explanation and visualization can be found in 
reference [7]. 

The idea behind using Word2Vec and Word Mover’s Distance is that requirements that should be 
linked, should have text that are similar. This approach failed us for two major reasons. First off, Collins 
requirement data contains several acronyms and flags. Whenever a new acronym or flag is seen, the 
model would need to be retrained to account for the new words. The problem is that there must be 
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extensive data to accurately capture the context/meaning of the flag, which was not available. Secondly, 
requirement data at Collins is not written in such a way that the algorithm will succeed. The algorithm 
thrives with sentences which are rephrasings of each other, but requirement texts varied too much for the 
algorithm to pick up similarity regardless of whether the links were classified as good or bad.  

4.7.3 Doc2Vec 
Doc2vec is based on word2vec, but the difference is that it considers the word order into account. With 
the dependency of Word2Vec, the result was similar to Word2Vec and Word Mover’s Distance. So we 
decided to move on with different approaches. The lessons learned is that word orders do not matter in 
requirements tracing. 

4.7.4 GloVe 
GloVe, short for Global Vectors, is a common approach for determining the semantic similarity 

of words. This comparison is done through embedding the words to be compared,then calculating the 
cosine similarity between them (e.g. the cosine of the angle between two vectors of a product space that 
can be used to measure the similarity between the vectors) based on their positions in the 
multi-dimensional global vectors. The cosine similarity is returned as a decimal number representing the 
similarity of the words, where two of the same words are given the maximum similarity value of 1. For 
example, when comparing the words “man” and “woman”, the resulting cosine similarity would be very 
large, but very small if you were comparing two completely unrelated words. This similarity comparison 
approach is very similar to Word2Vec (which is discussed in section 4.7.2). Though GloVe is very 
effective in calculating the similarity between two words, it is not nearly as effective in computing 
semantic similarity of sentences due to the fact that it computes similarity based solely on the similarity 
between words in a sentence but does not take into consideration the context in which those words are 
being used.  

Studies comparing Word2Vec and GloVe ability to perform sentence comparisons have been 
conducted by Yves Piersman[5], and have concluded that Word2Vec is actually the better option when 
comparing sentence similarity, even though it is still not very good. The results showed that the average 
similarity of good links was very close to the average similarity of bad links, which would not allow us to 
effectively distinguish whether a link was good or bad in order to officially classify it. A screenshot of the 
results from an experiment we ran on a small set of requirement data can be seen below, displaying that 
the average similarity for good links (the total sum of the similarity / the total number of good links) and 
the average similarity of bad links only vary by 0.02418, making the two classifications indistinguishable 
from each other. After this experiment failed, we decided that we needed to take a different approach 
towards natural language processing, and try to find a method to compare sentences based on the topic of 
the content rather than strictly on the similarity of the text.  
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Figure 4: Results from GloVe experiment 

 

 

4.7.4 Topic Modeling 
The idea of topic modeling came up in our discussion after the experiments that showed that 

word2vec, WMD, and Glove which are the approaches that directly compare the similarity of texts turned 
out to make really bad predictions. Topic modeling approach, on the other hand, doesn’t directly compare 
the similarity of two texts. Instead, it compares the topic probability distribution of two texts. So far it is 
showing some interesting results and we are focusing on this approach.  

We have used the most popular topic model called Latent Dirichlet allocation (LDA). It puts that 
each document (in our case, each REQ/UC) is a mixture of a small number of topics with weight and each 
topic constitutes of small number of related words with weight.  [4] 

There are multiple factors to consider in topic modeling. There are mainly two things we need to 
consider: 1) how to make topics and 2) how to compare topics. We performed experiments with slightly 
different variations and the following is what we have tried. 

 
Topic modeling experiment 1 - Separate LDA models for REQs and UCs 

1. Find top N most used words and prompt engineers to choose stop words  (this technique would 
apply to any kind of algorithms we would use) 

- eg. we probably don’t need “shall” in REQ and “user” in UC 
- maybe completely remove any verbs 

2. Somehow unify similar words 
- eg. unify “misspell”, “misspells”, “misspelling”, “misspelled” into “misspell”  

3. Make separate LDA models for REQs and UCS 
4. Compare the probability distribution of words for each topic for each req for each uc 
5. Each REQ chooses top X similar UCs 

 
Topic Modeling Experiment 2 - One LDA model for both REQ/UC 

1. Filter out all words except nouns 
2. Combine REQs and UCs into one table 
3. Make a LDA model with N topics 
4. Choose the topic which has the highest score for each REQ/UC 
5. For each REQ, find UCs that are in the same topic 

 

Topic Modeling Experiment 3 - Same as Experiment 2 except that for step 4 and 5, we compare the 
probability distribution of topics.  
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For example, assume we find three topics for the requirement data. REQ1 has a topic distribution of { (0, 
0.5), (1, 0.25), (2, 0.25) } and UC1 has a topic distribution of { (0, 0.25), (1, 0.25), (2, 0.5) } and UC2 has 
a topic distribution of { (0, 0.6), (1, 0.2), (2, 0.2) }, where topic distribution is a set of tuples and each 
tuple represents pair of the topic index and its weight. We now use the method of least squares to 
calculate the distance of these REQ/UC.  

For REQ1 and UC1, 0.5 .25) 0.25 .25) 0.25 .5) .125( − 0 2 + ( − 0 2 + ( − 0 2 = 0  

For REQ1 and UC2, 0.5 .6) 0.25 .2) 0.25 .2) .015( − 0 2 + ( − 0 2 + ( − 0 2 = 0  

Thus UC2 is the better link for REQ1 because it is closer in similarity. 

4.8 Validation and Acceptance Test 
Development of standard accuracy calculation methods, which are necessary to effectively 

compare the performances of different algorithms, is mission-critical. We have tried various methods for 
testing and we will talk about the pros/cons of each method. 

The following are some of the suggested methods. For all of the following methods, we assume 
that the test data is perfect, meaning that only good links are listed for each requirement and there are no 
missing links within the file.  

☖  Most naive accuracy measure:  

1. For each REQ, check if one of the predicted links is in the set of existing links 
2. If so, mark this requirement as 1, otherwise 0. 
3. Take sum of these values for all requirements and take average.  

It’s computationally cheap to calculate this. However, the problem of this measure is that it is such an 
easy grading. It needs to be more strict to effectively measure the accuracy. 

☖  Simple accuracy measure:  

1. For each REQ, Take top N predictions, where N is the number of existing links. 
2. Calculate Accuracy = (# of correct predictions) / (# of all predictions) for each REQ. 
3. Take average of that measure for all REQs. 

It’s also computationally cheap to calculate this. However, the problem is that it only considers good 
links. 

☖  Another simple measure using set theory concept:  

1. Accuracy = (Le ∩ Lp ) / (Le ⋃ Lp),  where Le is a set of existing links and Lp is a set of predicted 
links. [(Correct prediction) / (correct + wrong predictions)] 

2. Again, take average of it 

☖  Measure using confusion matrix [3]: 

1. For each REQ, calculate accuracy = (TP + TN) / (TP + TN + FP + FN) 
2. Take average of them 
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Since we have the problem of not considering bad links, we developed another measure using confusion 
matrix. Creating a confusion matrix is an ideal approach because it can reveal lots of information about 
the model with just a simple graph. Important statistics that will by analyzed from the confusion matrix 
will be overall accuracy of the model, number of false positives, and number of true negatives. Analysing 
these statistics will tell us how we need to calibrate the model for better results, or if the approach needs 
to be rethought as a whole.  

So far this is the most reliable method we can think of. However, the problem is that it takes significant 
human effort since we need to manually select really bad links, the links that seem very different from the 
requirement. For prototyping we should use one of the accuracy calculation measures listed above. 

4.9 Cost Consideration  
In the context of our project, there are not any cost considerations to take into account. All of the 

technologies we are using to build our tool (e.g. Python for the programming language, as well as libraries 
such as NLTK, Word2Vec, SpaCy, etc) are all free to use, so Collins Aerospace and our design team do 
not need to consider the costs of purchasing technologies in order to build our tool.  

4.10 Possible Risks and Risk Management 
 

4.10.1 Risks  

This project is considered to be safety critical since the requirement information that it will 
ultimately be analyzing once implemented by Collins Aerospace is highly classified information. 
Therefore, the main risks of this project pertain to security. We must be sure that it is impossible for any 
individual outside the employees of Collins Aerospace to be able to access any information that is input 
into our tool (e.g. the documents containing details of requirements and use cases for a certain project) or 
output from our tool (e.g. the analysis of the given requirement trace and recommended additional use 
case links for any requirements). 

We must also be sure that our analysis algorithms are implemented as accurately as possible. 
Collins Aerospace will be relying on this tool to analyze their requirement traces for projects that rely on 
these traces being extremely accurate, so one of the biggest risks in this project is a failure in one of our 
algorithms causing a good requirement link to be classified as a bad requirement link or causing a bad 
requirement link to be classified as a good requirement link, and having this requirement trace get carried 
forward in the project.  
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4.10.2 Risk Management 

In terms of security risks, we will need to have further discussion with our contacts at Collins 
Aerospace in order to determine our mitigation strategy. Since Collins is a very large corporation that has 
developed many safety critical projects, it would make sense that they have a standard, or at least certain 
requirements, on how to implement their security software. They will either be able to provide us with 
guidelines on how to implement this ourselves, or may hand the project over to their cyber-security 
experts and implement these features internally. 

While there is no guarantee that link classification will always be perfect, we are mitigating the 
risk of incorrect classifications by continuing to research different similarity algorithms and testing their 
accuracy against each other. Over the course of next semester, we will make a final decision of what 
algorithm we will use in our final implementation based on the results of our experiments.  

4.11 Feasibility Analysis 
The feasibility of the topic modeling approach cannot be completely determined as of the current 

point of the project. With that being said, it is the most reasonable approach that we have considered so 
far on the following terms:  

4.11.1 Unsupervised Learning: 
Topic modeling is an ideal solution due to the fact that it is under the category of unsupervised 

learning. Due to the randomness and variance of the requirement data between projects, there is a lack of 
solid features that could be picked to define a likelihood that a given link is good or bad. Using 
unsupervised learning will allow us to train a model which picks an appropriate set of topic distributions 
for any given directory no matter how they were written on for that project.  

While this provides an interesting advantage for our project, it also creates concerns. Since we are 
not in control of how the model creates these topics, there is no way to know that it will be choosing 
topics in a way that models links between requirements. This is not something we will know until more 
testing is performed for this approach on Collins Aerospace requirement data.  

4.11.2 Providing Topics/Probability Likelihoods: 
Another positive aspect of using the topic modeling approach is how the model represents data. 

The topic model outputs probability distributions to topics for any given requirement we query. This 
allows us to easily suggest possible links according to the topic probability distribution output. It also 
allows us to easily compare two requirements probability distribution to determine whether they should 
be linked or not. Since we are defining the process for classifying links as good or bad, we can also create 
our own threshold of what should be classified as a good, bad, or even suspicious link. Overall, the 
outputs of the model will be easy for us to work with in terms of both classifications and suggestions.  
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4.11.3 Trainability: 
This approach eliminates the problem of out of vocabulary words which we have run into with 

previous solutions such as word2vec and glove. Collins Aerospace requirements include flags and 
acronyms which are continuously introduced. When these are encountered, there is no way to train the 
models on words without extensive training data. The problem, however, is since these flags and 
acronyms were just created, there's no efficient way to train on them which renders them difficult to 
manage. The topic modeling approach does not rely on learning the meaning of individual words. Instead, 
it picks similarities in the provided data to define topics with, allowing it to eliminate the roadblock of out 
of vocabulary words.  

4.11.4 Conclusion of Feasibility: 
Over all, this approach seems feasible and may be promising in finding a solution towards 

analyzing Collins requirement data. Topic modeling allows for unsupervised learning, to account for the 
variance in data; has conveniently structured outputs for us to use in classification and suggestions; and 
also removes roadblocks such as out of vocabulary words. However there is some concern which will 
need to be tested for whether the approach can consistently and accurately model requirement data. 

4.12 Project Proposed Milestones and Evaluation Criteria 
Milestone 1: Research Machine Learning Algorithm for Requirement Traceability  

Milestone 2: Experiment on Milestone 1 

Milestone 3: Analyze the result obtained in Milestone 2 

Milestone 4: Design the Algorithms and Interfaces for the primary requirements 

Milestone 5: Develop the software with primary requirements 

Milestone 6: Create Testing Modules  

Milestone 7: Determine Secondary Requirements 

Milestone 8: Implement secondary requirement 

Milestone 9: Create testing modules for secondary requirements 

Milestone 10: Create Testing Module for software with primary and secondary requirement. 

Milestone 11: Code Review, software review, required instruction manual and videos for 
demonstration.  

MIlestone 12: Final review and presentation 

 

 

 



  22 
 

4.13  Project Tracking Procedure 
Our team is using the agile development methodology for this project with a two week sprint 

duration. In order to track progress on individual tasks, our team set up a Jira server. With Jira, we are 
able to create tickets for each task in the current sprint and assign those tasks to members of the group. 
We have also created a Git repository for version control purposes, where we all push experiments to our 
own individual branches and then merge our work to the master branch once we have finished 
implementing a certain functionality. 

4.14 Test Plan 
As the part of the project is related to the traceability. The traceability needs to be worked in 

forward, backward and also in bi-directional. Test Modules will be created for each of them which are 
introduced below.  

4.14.1 Forward Traceability Test  
As forward traceability test, the software needs to verify if it could map the higher level 

requirement only to a lower level requirement. Test cases will be created keeping in mind the example 
show below:  

 

Figure 5: Test Case for Forward Traceability 

Thus, it will test if the higher level is been correctly mapped with a lower level use case. 
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4.14.2 Backward Traceability Test  
As backward traceability test, the software will need to verify if it could relate the lower level use 

case with its higher level requirement efficiently. Test cases needs to be created keeping in mind the 
example shown below:  

 

Figure 6: Test Case for Backward Traceability 

Thus, a test case will be created to check if lower level use case traces back to its desired higher level 
requirement.  

4.14.3 Bi-Directional Traceability Test  
Bi-directional traceability test will test if both higher level requirement and the lower level 

requirement traces back to each other. Thus, test cases will be created keeping in mind the following 
scenario as shown below:  

 

 

Figure 7: Test Case for Bi-Directional Traceability 

Thus, a test case will be created to confirm that bi-directional traceability functionality.  
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4.14.4 Classification and Prediction Test  
We will test the classifier by doing a series of 80/20 training/test data splits and generating 

confusion matrix on each run. An 80/20 training test split means that we will choose 80% of the data to 
train the model, chosen at random. Once the model is trained, the model will attempt to classify the rest of 
the 20% of data. We will monitor how the model classifies the 20% of test data and generate confusion 
matrix on it which gives us statistics on how the model is performing, including accuracy statistics. 

5. Assessment of Proposed Solution 
5.1 Summary of suggested approaches 
 
We first came up with solutions using word2vec/WMD approach using a pretrained model. It turns out it 
is difficult since the pretrained model doesn’t contain a lot of technical terms, acronyms, and flags that are 
in the requirements data. Retraining the model is difficult since the model has already learned many 
vocabulary and its connections. Another problem we faced is the fact that we have to deal with bad links. 
We then trained model on our own dataset but the result shows low accuracy. Then we figured that 
basically the problem is directly comparing texts. So we came up with a different approach that indirectly 
compare the text similarity, one of them is topic modeling. Heavy preprocessing is necessary to 
effectively find the text similarity. This is currently the state of our research project. We are actively 
researching topic modeling as well as other deep learning methods like recurrent neural network (RNN). 
We are also investigating the possibility of supervised learning, which also takes the existing links into 
account when training the model. 
 
 

5.2 Assessment of Word2Vec and Word Mover’s Distance 
Word2Vec paired with Word Mover’s Distance, as stated in section 4.7.2, proved not to be the 

best combination to solve our problem. Word Mover’s Distance is build more so to identify rephrasings of 
sentences as similar, or even sentences with the general same meaning/context. However, this is not how 
Collins Aerospace writes their requirements. All requirements, whether classified as a good or bad link, 
returns within the same range of Word Mover’s Distance. This tells us that the algorithms does not tell a 
difference between good and bad links by soley looking at the context of the requirements text. A better 
solution will find characteristics of good links and bad links and will create a classifier from those 
characteristics. 
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5.3 Assessment of Glove 
After implementing GloVe and experimenting on the small requirement dataset, the results were 

very similar to the experiments we performed that implemented Word2Vec with Word Mover’s Distance. 
Relying on cosine similarity between vectors can be very effective in comparing individual words, but 
when comparing an entire sentence, a cosine similarity calculation of each word cannot effectively take 
into consideration the context or topic of the full sentence. Even after the removal of stop words (e.g. 
common words that appear in almost any English sentence such as ‘a’ or ‘the’), the average similarity of 
good links and average similarity of bad links varied by a very insignificant amount, making the two 
classifications indistinguishable based on the similarity calculations produced from the implementation of 
GloVe. In our case, as well as in the study [5] referenced below, GloVe and Word2Vec performed 
similarly when computing sentence similarity, but were not considered sufficient. It may be that there is 
more preprocessing work to be done rather than just filtering out stopwords, or filtering out any word that 
is not a noun. GloVe allows you to define your own custom global vectors, so with more experimentation 
it is possible that we discover a way to utilize these custom definitions in order to more effectively 
classify links.  

5.4 Assessment of topic modeling 
Topic modeling experiment 1: The purpose of this experiment was to show the feasibility of topic 

modeling and it hopefully works better than existing approaches that directly compares the REQs/UCs. 
But it got to the problem that we are not sure how to compare two separate topic models. Topics are a set 
of words with weight. However, LDA doesn’t tell the difference between, for example, ‘user and ‘users’. 
We can use some pre-trained word2vec model for this problem but it is going to be really complex 
process. For example, how do we decide which word to unify similar words? We eventually gave up on 
this approach. 
 

Topic modeling experiment 2: This experiment was done as a response to experiment 2.  Instead 
of making separate models for REQs and UCs we can just make one model. This way we don’t need to 
worry about figuring out to compare separate topic models. This idea made it much easier to implement 
the algorithm and we were successful in making something working. Our result using naive accuracy 
measure shows that it’s got accuracy of 57%.  
 

Topic modeling experiment 3: This experiment was done as a response to experiment 3. The 
difference is that instead of taking the topic with the highest weight and compare the UCs using that topic, 
we compare the topic probability distributions. This shows better accuracy than topic model 2. 
 

Other than all these topic modeling experiments we have done, we should definitely train bigger 
data and see the accuracy of our approaches. 
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6. Estimated Resources and Project Timeline 

6.1 Estimated Resources  

6.1.1 Personnel effort requirement 
 

Task Description  Effort Needed  

Research Learning Algorithm Research on algorithms that are 
available for sentence similarity 

Most of the research done so far 
has turned out to be negative of 
what we wanted so far. Also, 
since none of the team member 
is highly educated on the 
machine learning aspect of 
software development. It is very 
important for each of the team 
member to understand and 
research on the algorithms 
efficiently 

Experiment Learning Algorithm Conduct experiments on the 
research related to the machine 
learning algorithms 

The gensim library includes 
many of the algorithms that we 
will conduct the experiment on. 
However, there are few 
experiments that needs to be 
conducted out of the gensim 
library in order to make the 
algorithm more efficient and 
functionable as per the 
requirement.  

Analyze the experiment Once the experiment is been 
conducted, it should be analysed 
as per the client’s requirement 

Since the project has very strict 
and specific requirements, once 
we have seen how each 
algorithm works through 
research and experimentation, 
we will decided which 
algorithms best suit the client’s 
needs.  

Design Algorithms After deciding on the best 
learning algorithm, we must 
design an algorithms that 

There will be a considerable 
amount of attention given to this 
task. The algorithm designed 
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analyzes the similarity computed 
by the learning algorithm in 
order to flag requirement links 
as good, bad or suspicious. The 
algorithm must also identify 
requirements that do not have 
any links and based on 
computed sentence similarity.  

here will define the efficiency of 
the most of the system. With 
that been said, we want this to 
be as efficient as we can 
possibly make it. Once an 
algorithm is created, it may 
continue to be improved until 
the end of the project.  
 

Test the Design Algorithm Once the algorithm is been 
decided, testing the algorithm 
will take place  

Implementation of the Designed 
Algorithms needs to be 
performed in python3.7 using 
necessary libraries. Once the 
implementation is done, testing 
on different test cases or using a 
junit or mockito needs to be 
performed.  

Begin Developing Modules Write Modules for the project  Implement modules irrespective 
of the size. Some of them are 
large and will be time 
consuming, however others will 
be pretty straightforward to 
implement 

Test Modules  After implementation of 
Modules, thoroughly test it to 
ensure that it meets the expected 
requirements  

Testing will require much 
attention during the 
development process. We will 
need to ensure that all the 
desired requirements by our 
clients are met. Thus, we must 
develop test cases for each of the 
requirement and analyze it 
thoroughly.  

Insert Tested Modules into 
project structure  

Once a module has been 
completed, we will merge it with 
other finalized modules in order 
to continue to add to the final 
build of the project.  

This step is very 
straightforward, since it only 
requires pushing our work into 
the repository where we are 
storing the finalized project 
modules.  

Table 1: Personnel Effort Requirement 
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6.1.2 Other resource requirement  
Jira is used as an external resource for project management process. In order to host jira, we are 

using an apache web server based on Linux 16.0.1 hosted at Iowa State University ITS services. Apart 
from that, we are using number of libraries from python such as gensim, nltk, pandas, scikit learn, scipy, 
spacy, matplotlib, numpy and few built-in libraries. For the installation process of the external libraries 
supported by python, we use anaconda 3 as well as miniconda which is a package manager for 
dependencies.  

6.1.3 Financial requirement  
This tool is developed with python and open source software. Therefore, there will be no financial 

requirements to be met.  

6.2 Project Timeline 
Collins Aerospace has primary as well as secondary requirements. Most of the time in Spring 

semester was spent on research on primary requirements. We worked on researching, experimenting, 
analyzing and testing algorithms such as word2vec, word mover distance, glove, and topic modeling - 
LDA. We will be continuing research, experimentation and analysation of different algorithms as well in 
the second phase of the semester to improve the result. Along with that, we will be implementing the 
software as a whole with testing modules. Apart from that, we will also implement secondary 
requirements. Secondary requirement are still under review by Collins Aerospace. As per our client, he 
will be introducing it during the next semester. Thus, the timeline below with the gantt chart is tentative 
and has to be declared later based on the proposal of the secondary requirement.  
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Figure 8: Tentative Gantt Chart 
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7. Standards 

7.1 Unethical Processes 
No process that this team uses during the development of this project would be considered 

unethical by organizations such as IEEE. We have taken a number of their standards including the IEEE 
Standard for Software Reviews and Audits [10], and the Systems and Software Engineering Standards for 
Developing Information for Users [11] into consideration in order to guide our decision making 
throughout the process of development. 

 

 

7.2 Team and Company Interactions  
When we are holding a meeting with our contacts at Collins to demonstrate the progress made 

during our previous sprint, we structure those meetings based on the standards given in the IEEE Standard 
for Software Reviews and Audits [10] in order to guide our decisions on how to prepare for the meeting 
by establishing roles within our team for the meeting based on those defined within these industry 
standards such as the recorder who documents the discussion for later reference or the review leader who 
leads the discussion when demonstrating the progress our team has made over the sprint. In terms of 
internal interaction among team members, we are operating using the agile development methodology. 
This includes us having frequent stand up meetings, developing user stories and use cases, and conducting 
sprint meetings in order to lay out development goals for the upcoming two week sprint. When structuring 
all of these artifacts and conducting these meetings, we look to the Systems and Software Engineering 
Standards for Developing Information for Users in an Agile Environment [11] for guidance based on the 
industry standards. 

7.3 Security 
As previously mentioned, we are not at a point in this project yet where we have implemented 

any sort of security features, but the implementation of these features is a critical part of this project. We 
will need to ask Collins Aerospace if there are any standards they have for securing their software and 
will need to first consider that as a guideline. Additionally, we will refer to the IEEE Standards for 
Software Safety Plans [12] in order to educate ourselves about industry standards relating to development 
and maintenance of software systems.  
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8. Closure Material  

8.1 Closing Summary  
Requirement Tracing is important in developing reliable softwares, especially in large 

organizations such as Collins Aerospace. It helps in minimizing the efforts and errors by software 
engineers on writing huge test cases, higher and lower level requirements, and mapping each other to 
obtain a desired output. Collins Aerospace Artificial Intelligence for Requirement Analysis Tool will 
efficiently replace the current method where engineers would have to enter the requirements and test 
cases manually. Moreover, it will also reduces the human error caused during the process. Overall, 
completion of this project will provide Collins Aerospace to be one of the rarest companies to achieve 
artificial intelligence for requirement traceability. 
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